

BlueCHP Limited

Detailed Site Investigation

Report SYDEN282995-R01

20 and 22 Mindarie Street and 30 Pinnaroo Place, Lane Cove North NSW

Trust is the cornerstone of all our projects

This page has been left intentionally blank

Detailed Site Investigation Report

Prepared for BlueCHP Limited

Prepared by
Coffey Services Australia Pty Ltd
Level 19, Tower B, Citadel Tower, 799 Pacific Highway
Chatswood
NSW 2067 Australia
t: +61 2 9406 1000 f: +61 2 9415 1678
ABN 55 139 460 521

15 December 2020

SYDEN282995-R01-Rev0

Quality information

Revision history

Revision	Description	Date	Originator	Reviewer	Approver
Rev0	Revision 0	05/11/2019	D McFadden	M. Dunbavan	M. Locke

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Rev0	1	PDF	BlueCHP Limited	15/12/2020

i

Table of contents

1.	Introd	duction	4
	1.1.	Background	4
	1.2.	Objectives	4
	1.3.	Scope of Works	4
2.	Site I	Information	5
	2.1.	Site Identification	5
	2.2.	Site Walkover Inspection	5
3.	Previ	ious Environmental Assessments	6
	3.1.	Preliminary Contamination Assessment (Coffey, 2017)	6
4.	Data	Quality Objectives	7
5.	Samp	pling and Analysis Plan	g
	5.1.	Soil Sampling	9
	5.2.	Analytical Suite	10
6.	Asse	essment Criteria	11
	6.1.	Health and Ecological Investigation Levels (soil)	11
	6.2.	Health-based Criteria	12
	6.3.	Asbestos	13
	6.4.	Ecological Investigation and Screening Levels	13
	6.5.	Management Limits	14
	6.6.	Aesthetic Considerations	14
	6.7.	Waste Classification Thresholds	15
7.	Quali	ity Assurance / Quality Control	15
8.	Resu	ults	15
	8.1.	Site Specific Geology	15
	8.2.	Field Screening	16
	8.3.	Soil Results	16
		8.3.1. Health-based Investigation and Screening Levels	16
		8.3.2. Asbestos	16
		8.3.3. Ecological-based Investigation and Screening Levels	16
		8.3.4. Management Limits and Direct Contact	16
		8.3.5. Preliminary Waste Classification	16
9.	Conc	ceptual Site Model	17
10.	Discu	ussion	18
11.	Conc	clusions and Recommendations	18
12	Refer	rences	10

Tables

Table 2-1: Site Identification Details

Table 4-1: Data Quality Objectives

Table 5-1: Site Investigation and Soil Sampling Procedures

Table 5-2: Summary of Analysis

Table 6-1: Summary of HIL-B Soil Acceptance Criteria

Table 6-2: Summary of HSL-A&B Health Screening Levels

Table 6-3: Summary of Ecological Investigation Levels in Soil

Table 6-4: Summary of ESLs in Soil

Table 6-5: Summary of Site Management Limits

Table 8-1: Summary of Site-Specific Geology

Table 9-1: Conceptual Site Model

Figures

Figure 1 - Site Locality

Figure 2 – Site Layout and Sampling Locations

Appendices

Appendix A - Figures

Appendix B - Tables

Appendix C – Borehole Logs

Appendix D - Calibration Certificates

Appendix E – Photographs

Appendix F - Analytical Laboratory Certificates

Appendix G - Data Quality Assessment

1. Introduction

1.1. Background

BlueCHP Limited are redeveloping the property located at 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW (the site). The redevelopment will be for high-density residential purposes.

NSW Land and Housing Corporation (LAHC) engaged Coffey Services Australia Pty Limited (Coffey) to undertake a Detailed Site Investigation (DSI) at the site in November 2019. Coffey's DSI report (reference SYDEN233878-R01-Rev1) was issued on 13 November 2019. With written approval from LAHC, Coffey has reissued this DSI report to BlueCHP in December 2020 to support an application for planning approval for redevelopment of the site. LAHC is the current land owner.

Coffey previously undertook a Phase 1 Preliminary Contamination Assessment (PCA) at the site, as detailed in the following report:

 Coffey (2017), Preliminary Contamination Assessment, 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW, dated 20 January 2017, report ref. SYDEN198927-R06.

This PCA report identified a number of potential sources of contamination and recommended further investigations to be carried out. Specifically, it was recommended that a Hazardous Building Materials Survey (HAZMAT) and a Phase 2 DSI be undertaken for the site.

This DSI was undertaken in general accordance with the proposal submitted by Coffey to LAHC dated 5 September 2019, ref. SYDEN233876-P01. It is noted that a HAZMAT survey was also completed as part of this commission and is presented in the following report:

 Coffey (2019), Pre-Demolition Asbestos and Hazardous Materials Survey, 20-22 Mindarie Street and 30 Pinaroo Place, Lane Cove North NSW, 2066, dated 1 November 2019.

1.2. Objectives

The objectives of this DSI are to:

- Complete an investigation to collect data to enable an assessment of the areas of environmental concern identified in the PCA (Coffey, 2017).
- Provide an opinion on the suitability of the site for the proposed residential development in accordance with SEPP 55 Remediation of Land.

To meet these objectives, the DSI has been undertaken in general accordance of relevant guidelines (current in November 2019) including the NSW OEH (2011) 'Guidelines for Consultants Reporting on Contaminated Sites' and the NEPC (2013) *National Environment Protection (Assessment of Site Contamination) Measure 1999* (ASC NEPM).

1.3. Scope of Works

The scope of works included the following:

- Safety planning including preparation of a Site-specific Safety Plan (SSP), Safe Work Method Statements (SWMS) and obtaining Dial-Before-You-Dig (DBYD) plans;
- Review the previous PCA Report (Coffey, 2017) for the site and previous environmental reports (if available).
- Engagement of a certified underground service locator to provide underground service clearance.
- Site attendance by a qualified and experienced Coffey Environmental Scientist or Engineer, who
 to undertake the following:

- Conduct a detailed site walkover inspection of the site to identify if site conditions have changed since the previous investigation.
- Collection of soil samples from 7 borehole locations. Boreholes were advanced using hand auger to a maximum depth of 1m or 0.5m into natural soils.
- Soil samples were screened in the field using a calibrated photo-ionisation detector (PID) to assess the potential presence of ionisable volatile organic compounds (VOC). Soil conditions were logged by the Coffey scientist/engineer in accordance with the Unified Soil Classification System (USCS).
- Laboratory analysis of selected soil samples for Contaminants of Potential Concern (COPCs) identified in the PCA.
- Data assessment and interpretation; and
- Preparation of a DSI report about soil contamination on the site (this document).

2. Site Information

2.1. Site Identification

The site identification details are summarised in Table 2-1.

Table 2-1: Site Identification Details

Site Address	20&22 Mindarie Street & 30 Pinaroo Place, Lane Cove North NSW. Figure 1 shows the location of the site.	
Total Site Area	The assessment area is approximately 1,750m. Refer to Figure 2 for the assessment area.	
Title Identification Details	Lots 81, 82 and 83 in DP 35865	
Current Zoning	"R4 – high density residential" pursuant to the Lane Cove Local Environmental Plan 2009.	
Current Site Use	Occupied by three residential dwellings.	
Adjoining Site Uses	North: Mindarie Street followed by a high-density residential land uses. South: Low density residential.	
	East: Pinaroo Place followed by high density residential land uses.	
	West: Low density residential land uses.	

2.2. Site Walkover Inspection

A site walkover inspection was carried out by a suitably qualified and experienced Coffey Environmental Scientist on 8 October 2019. The site conditions were observed to be broadly consistent with the conditions identified during the Coffey (2017) PCA investigation, which included the following:

- The site was occupied by three vacant residential houses. The land sloped relatively steeply to the south east.
- Each of the three lots were occupied by a residential dwelling. Building materials included brick, wood and tiled roof. Cement fibre sheeting were observed on the eaves of the buildings and in electrical boxes.

- Building conditions were in good condition with some evidence of depredation/weathering.
- The houses were surrounded by grassed lawn with signs of stress noted in places, however this was likely due to lack of maintenance. Areas of brown grass were observed in places around the perimeter of the site, likely associated with weed control.
- Fragments of asbestos fibre cement sheeting were observed on the ground surface beneath the dwellings at 20 and 22 Mindarie Street.
- A small, corrugated iron garden shed was identified at 22 Mindarie Street and was situated on a concrete pad. No chemicals or evidence of staining was identified within this shed.
- A large stockpile of mulch was observed on the driveway at 22 Mindarie Street.
- Driveways consisted of two concreted strips with exposed soil/grass within the middle.
- Pavements generally consisted of concrete driveways and paths and were in good condition, with no significant staining observed.
- With the exception of topsoil, no evidence of fill material was identified with current site buildings
 appearing to be 'cut' into the sloping site.
- There was no evidence of the presence of current or former underground septic or storage tanks on the site (including fill point, dip points, vent pipes or bowser plinth).
- No evidence of chemical storage or spills of fuel/oil and household chemicals was observed during the site walkover.

Selected site photographs are presented in Appendix E.

3. Previous Environmental Assessments

3.1. Preliminary Contamination Assessment (Coffey, 2017)

The PCA report presented a summary of the historical uses of the site based on a review of selected aerial photographs, NSW EPA public registers and Council planning records/certificates and identified the following:

- The site is underlain by Hawkesbury Sandstone (NSW Dept. of Mineral Resources, 1983; Scale 1:100,000). The Hawkesbury Sandstone is described as medium to course grained sandstone with very minor shale and laminate lenses.
- The depth of groundwater at the site is expected to be at depths (approximately > 10m bgl) within
 the weathered sandstone aquifer. Considering the topography of the site, groundwater is likely to
 flow in a south/south easterly direction towards Stringybark Creek which is a tributary for the
 Lane Cove River located west of the site.
- The elevation of the site ranges from 58mAHD (Australian Height Datum) within the north western corner or the site, dropping down to 50mAHD in the south eastern corner.
- Stringybark Creek is the nearest surface water receptor which is located approximately 160m south of the site. Sensitive human receptors include a nearby primary school located approximately 40m north and residential properties surrounding the site.
- A review of historical aerial photographs for the site indicated that the site was vacant land up
 until between the mid-1940s and mid-1950s. The site was then developed into residential land
 which resembles the current site layout. The site has remained relatively unchanged since.
- Building materials were identified to be brick and wood with fibre cement sheeting potentially
 containing asbestos identified on the eaves of the buildings and potential lead-based paint.

- The site was not identified as being listed on the NSW EPA contaminated land register or licenced under the POEO register, with previous land uses not identified as being significantly contaminating activities;
- Multiple nearby properties on the POEO register and historical land uses including service stations and mechanical workshops were identified within the surrounding area. However, due to These properties were located nearly 1km from the site and considering the inferred groundwater flow direction (south/south east), the risk for offsite contamination migration was considered to be negligible;
- Acid sulfate soils are not expected within the site.
- The following potential sources of contamination were identified:
 - Weathering of Hazardous building materials;
 - Potential for minor oil/fuel leaks from vehicles and storage of small quantities of fuel and oil;
 and
 - Historical and current use of pesticides and herbicides.

Based on the findings of the PCA, Coffey recommended a DSI and Hazardous Building Materials Survey be undertaken at the site.

4. Data Quality Objectives

As stated in Section 18 (Appendix B) of Schedule B2 'Guideline on Site Characterisation' of the *National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM)* 2013, Data Quality Objectives (DQOs) are used to "define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site".

Data Quality Objectives (DQOs) were developed for this LSI and are summarised in Table 4-1.

Table 4-1: Data Quality Objectives

1. State the problem	The primary objective is to investigate the nature and extent of contamination at the site (if any) to assess if the site is suitable (or can be made suitable) for the proposed development. The main problems are: How many boreholes should be sampled and where? Are there access restrictions present that may affect the location of boreholes? To what depths should the boreholes be drilled? At what depth should soil samples be collected? What are the contaminants of potential concern for soil?	
2. Identify the decision	Is the site suitable for the proposed high-density residential land use.	
3. Identify inputs to the decision	 Information gathered from a Preliminary Contamination Assessment (Coffey, 2017) of the site, including a review of site history, environmental setting and information gathered from a site walkover. Field observations, PID screening results, and soil laboratory results Relevant legislation and regulatory guidelines. 	

4. Define the boundaries of the study

The study boundaries are defined by the boundaries of the site as shown in Figure 2. The vertical boundary was approximately 1m below the existing ground surface or the observed depth of fill.

5. Develop a decision rule

The decision rule for soil for each chemical/layer to assess the suitability of the site will be as follows:

Health Investigation Levels and Health Screening Levels:

- Where data sets are not sufficiently populated to calculate a 95% UCL then
 individual results are to be less than the health-based assessment criteria. Where
 individual concentrations are more than the health-based assessment criteria then
 further assessment and/or management would be required. This could include
 assessing individual results and/or undertaking a Tier 2 risk assessment.
- Where the 95% UCL can be calculated, the 95% UCLs are to be less than the
 health based assessment criteria and no individual results in the data set are to be
 greater than 250% of the assessment criteria; and the standard deviation of the data
 set is to be within 50% of the assessment criteria.
- Where the 95% UCL is less than the assessment criteria then further assessment and/or management would normally not be required.

Environmental Investigation Levels and Ecological Screening Levels (ESL)

Data is to be compared directly to environmental based assessment criteria. Where
individual concentrations are more than the EILs / ESLs, further assessment and/or
management would be required. This could include assessing individual results
and/or undertaking a Tier 2 risk assessment.

Background Levels

 Coffey will review published background ranges to assess background concentrations for use in calculating EILs and ESLs.

Asbestos

- Visual observation for the presence of asbestos in the form of ACM during the investigation will be undertaken. Selected samples of fill will also be collected and submitted to the laboratory for asbestos analysis.
- Should asbestos ACM be observed, or detected by the laboratory, then site
 specific factors will be considered and an approach for further investigation and/or
 remediation be assessed.

6. Acceptable limits on decision error

There are two main sources of decision errors:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction.

Results may lead the decision maker to make the following errors:

 Type I: deciding that the soil is not contaminated and, therefore, the site is suitable for the proposed high-density residential development when the reverse is true; and

	Type II: deciding that the soil is contaminated and, therefore, the site is not suitable for the proposed high-density residential development when the reverse is true.
	An assessment will be made as to the likelihood of a Type I decision error being made based on the results of a QA/QC assessment and the closeness of the data to assessment criteria. Additionally, statistical methods may be utilised, where applicable, such as 95% Upper Confidence Limit (UCL) calculations. The investigation levels for assessment are nominated in Section 6. A Type II error would result in additional investigation which almost certainly would allow correction of that error.
7. Optimise the design for obtaining data	Based on the previous Steps 1 to 6 of the DQO process, the optimal design for obtaining the required data is presented in the following sections (i.e. proposed field and laboratory programs).

5. Sampling and Analysis Plan

In accordance with the NSW EPA (1995) Sampling Design Guidelines, Contaminated Sites, a total of 7¹ boreholes (BH1 – BH7) were drilled in accessible locations at the site, using hand auger to depths of 0.1 m to 0.4 m below ground surface (bgs) and terminated upon refusal on weathered sandstone bedrock. An additional three surface samples were collected (SS-01 to SS-03) for asbestos analysis.

The soil investigation locations are shown on Figure 2.

5.1. Soil Sampling

The investigation works followed the procedures outlined in Table 5-1.

Table 5-1: Site Investigation and Soil Sampling Procedures

Activity	Detail / Comments
Below Ground Service Clearance	Coffey reviewed Dial Before You Dig (DBYD) for the site to identify potential underground utilities in the vicinity of borehole locations. These were also provided to an accredited utilities locator who were engaged to locate the underground utilities on 8 October 2019.
Soil Sampling	Soil samples were collected directly from the hand auger using a clean pair of nitrile gloves for each sample. Samples were collected from the near surface and then at approximately 0.5m intervals to the base of the borehole.
Soil Logging	Soil was logged by a suitably qualified and experienced Coffey scientist/engineer in accordance with Coffey's relevant Standard Operating Practice (SOP), which is consistent with Section 7.3, Field Description of Soils, in Schedule B2 of the ASC NEPM. Evidence of anthropogenic material and contamination (i.e. odours or staining) were recorded on the logs which are presented in Appendix C.

¹ Based on a site area of 1,750m², 7 sampling locations allows for the detection of a 19.9m diameter hotspot with 95% confidence.

Soil Screening	Soil samples were screened in the field for the presence of ionisable VOCs using a PID fitted with a 10.6eV lamp. Calibration certificate is presented in Appendix D.		
	Headspace screening results are recorded on borehole logs presented in Appendix C.		
Sample Handling and Transportation	Sample collection, storage and transport were in general accordance with Coffey's SOP.		
	Soil samples were placed into laboratory prepared and supplied glass jars, fitted with Teflon lined seals to limit possible volatile loss. Sample jars were filled to minimise headspace.		
	Separate samples for asbestos analysis were collected and placed in double zip lock bags.		
	The samples were placed into ice chilled coolers and dispatched to NATA accredited laboratories for analysis under chain of custody (CoC) control. CoC's are presented with the laboratory certificates included in Appendix F.		
QA/QC Samples	To measure the accuracy and precision of the data generated by the field and laboratory procedures for this assessment, Coffey collected and analysed the following quality assurance / quality control (QA/QC) samples:		
	 Two inter-laboratory duplicate soil samples; One intra-laboratory duplicate soil samples; One trip blank and one trip spike sample was included in the batch of samples to assess whether volatile organic contamination may have been introduced to the samples or volatile organic contamination may have been lost from the samples during shipping and field handling procedures. 		
Decontamination of sampling equipment	The hand auger was stopped when the target sample depth was reached and lifted to allow samples to be collected directly from the hand auger, decontamination of the hand auger was undertaken between sampling locations using Decon90 and rinsing with deionised water.		

5.2. Analytical Suite

Samples were analysed by Eurofins | MGT (primary laboratory), and ALS (secondary laboratory). Both laboratories are NATA accredited for the analytes selected.

A selection of primary soil samples were submitted for laboratory analysis for a suite of chemicals of potential concern as summarised in Table 5-2. From each borehole a near surface sample (0.1mbgl) and a slightly deeper sample (0.5mbgl) was selected with the remaining sample placed on hold at the laboratory.

Table 5-2: Summary of Analysis

Chemical of Concern	No. Primary Soil Samples
Heavy metals (8 priority elements)	11
TRH	11
BTEXN	11
PCBs	3
PAH	3
Herbicides	7
OCP / OPP	7
Asbestos in soil (presence/ absence)	11

Copies of borehole logs are provided in Appendix C, with laboratory test certificates provided in Appendix F.

6. Assessment Criteria

Assessment criteria were selected for relevance to the proposed high-density residential land use. The criteria presented below are intended to apply as Tier 1 risk assessment criteria based on certain site-specific characteristics. Where concentrations of a contaminant exceed the generic assessment criteria, then further consideration of the specific exposure pathway is required which may warrant further investigation, assessment or the development of a strategy to mitigate the potential risks identified.

6.1. Health and Ecological Investigation Levels (soil)

Health and ecological investigation levels for soil presented in Schedule B1 of the ASC NEPM were selected as investigation levels for chemical contaminants in soil. Health and ecological investigation and screening levels are applicable to the first stage (Tier 1) of site assessment and are used to assist in the iterative development of a Conceptual Site Model (CSM). They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) are applicable for assessing human health risk via relevant exposure pathways. HILs were developed for a broad range of metals and organic substances. These are generic to all soil types and apply generally to a depth of 3m below the soil surface for residential sites.

Ecological Investigation Levels (EILs) are associated with selected metals and organic compounds and have been developed for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of accessible soil, which corresponds to the root zone and habitation zone of many species. As the future site layout and design plans are currently not known, EILs have been applied to all soil samples as a conservative approach.

The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation after vapour intrusion into indoor air and direct contact with soil and groundwater. These HSLs depend on specific soil physicochemical properties, building configurations and land use scenarios.

The ESLs have been developed for selected petroleum compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. The ESLs broadly apply to coarse and fine-grained soils

under various land use scenarios and are applicable to the top 2m of accessible soil. ESLs have been applied to all soil samples as a conservative approach.

6.2. Health-based Criteria

The intended future use of the site is considered consistent with the "Residential B" exposure scenario described in Schedule B7 of the ASC NEPM which allows for minimal opportunities for soil access and includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

Chemicals with sufficient volatility to pose potential health risks via vapour inhalation pathway; namely TRH F1 and F2 fractions, BTEX and naphthalene concentrations were compared to the soil Health Screening Levels (HSLs) for vapour intrusion applicable to high density residential listed in Table 1A(3) in Schedule B1 of the ASC NEPM. Adopted values for health-based criteria are summarised in Table 6-1.

The adopted screening levels apply to a sandy soil.

The HILs for heavy metals, PAH, pesticides and PCBs in soils are selected from relevant values in Table 1A(1) in Schedule B1 of the ASC NEPM. Adopted values for health-based criteria are summarised in Table 6-1.

Table 6-1: Summary of HIL-B Soil Acceptance Criteria

Analyte	HILs for Residential B (mg/kg)
Arsenic (total)	500
Cadmium	150
Chromium (III) ¹	500
Copper	30,000
Lead	1,200
Mercury (inorganic)	120
Nickel	1,200
Zinc	60,000
Carcinogenic PAHs as Benzo(a)pyrene TEQ ²	4
Total PAHs	400
Aldrin + Dieldrin	10
Chlordane	90
DDT+DDD+DDE	600
Endosulfan	400
Endrin	20
Chlorpyrifos	340
Heptachlor	10
HCB	15
Methoxchlor	500
Non-dioxin like PCB	1

¹ Laboratory Total Chromium results (or Total Chromium minus Chromium III) will be assessed against the HIL for Chromium VI as initial screening assessment.

The HSLs for TRH, BTEX and naphthalene in soils are summarised in Table 6-2.

Based on the dominant soil texture, the HSLs for sandy soils have been adopted.

²TEQ = Toxicity Equivalent Quotient

Table 6-2: Summary of HSL-A&B Health Screening Levels

Chemical	HSL A&B – Low-high density residential (for sandy soils) (mg/kg) 0m to <1m	HSL-B Direct Contact ² (mg/kg)	Intrusive Maintenance Worker ^{2/3} (mg/kg)
Benzene	0.5	140	120,000 / NL
Toluene	160	21,000	85,000 / NL
Ethylbenzene	55	5,900	130,000 / NL
Xylenes	40	17,000	29,000 / NL
Naphthalene	3	2,200	1100 / 77
F1 (TPH C ₆ -C ₁₀ – BTEX)	45	5,600	82,000 / NL
F2 (TPH >C ₁₀ -C ₁₆ – Naphthalene)	110	4,200	62,000 / NL

Notes:

NL: non-limiting (i.e. contaminant is not considered to pose a risk to human health through vapour inhalation regardless of concentration).

Soil type is sandy soils based on field observation.

- 1. Table 1A(3) Soil Health Screening Levels for Vapour Intrusion (Schedule B1, ASC NEPM NEPC, 2013)
- 2. Table A4 Soil Health Screening levels for Direct Contact and Intrusive Maintenance Worker (CRC CARE, 2011)
- 3. Table A3 Soil Health Screening Levels for Vapour Intrusion (Intrusive Maintenance Worker) (CRC CARE, 2011)

6.3. Asbestos

Qualitative testing (presence) was undertaken on soil samples to assess for potential asbestos impact.

For the purpose of this assessment, a criterion of "no asbestos fines or asbestos containing materials detected in soils" has been adopted. For clarity, asbestos fines includes free asbestos fibres in soil.

6.4. Ecological Investigation and Screening Levels

To assess the impact on ecosystems including site vegetation from contamination within the upper 2m of the subsurface, the ASC NEPM presents Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for different land uses (e.g. areas of ecological significance, urban residential/public open space, commercial/industrial).

The EILs derived for heavy metals in soils are summarised in Table 6-3.

Table 6-3: Summary of Ecological Investigation Levels in Soil

Chemical	Urban Residential / Public Open Space (mg/kg)		
	Contaminant Limit	Ambient Concentration ⁽⁴⁾	EIL ⁽⁵⁾
Arsenic	100	5	100
Chromium	190 ⁽¹⁾	15	210
Copper	280 ⁽⁶⁾	30	310
Lead	1,100	160	1,260
Nickel	30 ⁽²⁾	5	40
Zinc	230(3)	120	350
Naphthalene	170	-	170

The ESLs for TRH, BTEX and benzo(a)pyrene in soils from Schedule B1 in the ASC NEPM are summarised in Table 6-4. Based on the dominant soil texture, ESLs for coarse grained (sand) soils have been adopted as a conservative approach.

Table 6-4: Summary of ESLs in Soil

Chemical	ESL – Urban Residential and Public Open Space ¹ (mg/kg)
F1 C ₆ -C ₁₀	180
F2 C ₁₀ -C ₁₆	120
F3 >C ₁₆ -C ₃₄	300
F4 >C ₃₄ -C ₄₀	2,800
Benzene	50
Toluene	85
Ethylbenzene	70
Xylenes	105
Benzo(a)pyrene	0.7

¹ Coarse grained soils have been adopted as a conservative approach.

6.5. Management Limits

In accordance with Section 2.9 of Schedule B1 of the ASC NEPM, consideration of Management Limits for petroleum hydrocarbons has been included to assess the potential for accumulation of explosive vapours, the potential risk to buried infrastructure, or the formation of phase separated hydrocarbons (PSH).

A summary of the adopted management limits for this site is provided in Table 6-5.

Table 6-5: Summary of Site Management Limits

Chemical	Soil Type	Residential, parkland and public open space (mg/kg)
F1: TRH C6-C10	Coarse	700
F2: TRH C ₁₀ -C ₁₆	Coarse	1,000
F3: TRH C ₁₆ -C ₃₄	Coarse	2,500
F4: TRH C ₃₄ -C ₄₀	Coarse	10,000

6.6. Aesthetic Considerations

There are no quantitative guidelines for aesthetics, however site assessment requires balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the future land use and its sensitivity. General assessment considerations for this assessment include:

¹ Based on a (conservative) clay content 1%.

² Based on a cation exchange capacity of 5cmol₂/kg typical of a granular soil with minor clay

³ Based on a cation exchange capacity of 5cmol /kg typical of a granular soil with minor clay and a pH of 6.5.

⁴ Derived from Olszowy.H et al (1995) using 25%ile concentrations for an old suburb with high traffic in NSW.

⁵ EIL = Contaminant Limit + Ambient Background Concentration, rounded.

⁶ Based on a pH of 6.5.

- That chemically discoloured soils or large quantities of various types of inert refuse, particularly if unsightly, may cause ongoing aesthetic concerns to site users.
- The depth of the materials, including chemical residues, in relation to the final surface of the site.
- The need for, and practicality of, any long-term management of foreign material.

6.7. Waste Classification Thresholds

Contaminant threshold (CT) values, specific contaminant concentration (SCC) and TCLP test values were adopted from Waste Classification Guidelines Part 1: Classifying Waste (NSW EPA 2014) to provide an indication of waste classification status of soil for disposal at landfill, if required.

Asbestos is pre-classified as Special (Asbestos) Waste under the POEO Act 1997.

7. Quality Assurance / Quality Control

Coffey undertook a Quality Assurance and Quality Control (QA/QC) assessment to address data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations and the processes for assessment of data quality provided in Section 19 (Appendix G) of Schedule B2 Guideline on Site Characterisation of the ASC NEPM.

The field and laboratory QA/QC procedures adopted and summary of results for this assessment are provided in Appendix G. In summary the data is considered to be adequately complete, comparable, representative, precise, accurate and usable for the objective of the works.

8. Results

8.1. Site Specific Geology

Table 8-1: Summary of Site-Specific Geology

Material / Origin	Depth to Top of Unit (mbgs)	Thickness of Unit (m)	Material Description
Fill	0.0 to 0.1	0.1	A layer of topsoil fill material was encountered across the site and typically comprised heterogeneous mixtures of gravelly / silty sand, brown, fine grained with some organic matter. No anthropogenic inclusions, staining, odours or asbestos were observed.
Weathered Sandstone	0.1 - 0.4	Not Proven	Weathered sandstone was encountered in all boreholes and comprised clayey sand, orange / red / brown, fine to medium grained, some medium plasticity clay. No odour or staining was observed within the residual soil / weathered sandstone. Refusal was reached during hand augering, on sandstone bedrock.

Groundwater was not observed.	
-------------------------------	--

The lithology encountered at each borehole location is shown on the borehole logs included within Appendix C.

8.2. Field Screening

Soil samples were screened for the presence of volatile hydrocarbons using a PID. The PID readings were between 0.1 ppm and 0.4 ppm, indicating that volatile hydrocarbons were unlikely to be present at reportable concentrations in the samples screened.

Individual PID readings are reported on the borehole logs presented in Appendix C.

8.3. Soil Results

8.3.1. Health-based Investigation and Screening Levels

Soil analytical results from boreholes BH01 to BH07 sampled on 8 October 2019 are presented in Table 1 (Appendix B). Chemical concentrations reported for soil samples were less than the adopted health-based investigation and screening levels in all samples analysed.

Copies of laboratory reports are provided in Appendix F.

8.3.2. Asbestos

Materials suspected to contain asbestos were not observed in any of the boreholes sampled during this soil investigation. Laboratory analysis of fill material did not identify the presence of asbestos within the samples.

Visible fragments of asbestos fibre cement sheeting were observed beneath the houses at 20 and 22 Mindarie Street, samples were collected during the HAZMAT investigation and laboratory analysis confirmed the material to contain asbestos (Coffey, 2019). The fragments were observed to be angular in size and were mixed within gravelly fill. The extent of asbestos fibre cement fragments beneath the houses is unknown due to access constraints. Access to soils beneath the house at 30 Pinaroo Place was not available.

8.3.3. Ecological-based Investigation and Screening Levels

Soil analytical results from boreholes BH01 to BH07 sampled on 8 October 2019 are presented in Table 1 (Appendix B). Chemical concentrations reported for soil samples were less than the adopted ecological-based investigation and screening levels in all samples analysed, with the exception of zinc in sample BH04_0.0-0.1 (410mg/kg) collected from topsoil material, which exceeded the EIL of 350mg/kg.

Copies of laboratory reports are provided in Appendix F.

8.3.4. Management Limits and Direct Contact

There were no exceedances above the soil criteria for direct contact of intrusive maintenance workers (CRC Care, 2011) or the management limits for petroleum hydrocarbons (NEPC, 2013).

8.3.5. Preliminary Waste Classification

The soil analytical results were compared to thresholds listed in the NSW EPA (2014) 'Waste Classification Guidelines - Part 1: Classifying Waste'. Based on this comparison, Coffey provides the following preliminary waste classification:

- The concentrations of chemicals in the topsoil fill material across the site (excluding gravelly fill beneath 20/22 Mindarie St) were found to be below the CT1 criteria, with the exception of lead in samples BH01_0.0-0.1, BH03_0.0-0.1, BH04_0.0-0.1. Further TCLP analysis was requested, which were below the TCLP1 waste threshold, indicating low leachability, classifying the remaining fill material as General Solid Waste (non-putrescible).
- Gravelly fill material beneath the houses at 20 and 22 Mindarie Street would classify as Special Waste – Asbestos Waste. Access to beneath the house at 30 Pinaroo Place was not available.
- A total of 4 samples of the residual were selected for analysis of the COPCs, with the reported concentrations of TRH and BTEXN being below the LOR. Concentrations of heavy metals were attributed to background levels resulting from historical development of the locality and were comparable with the range of concentrations listed in Olszowy. H et al (1995) Trace Element Concentrations in Soils from Rural and Urban Areas of Australia: Appendix 1, New South Wales, Old Suburb, high traffic. The underlying natural weathered sandstone bedrock would be classified as Virgin Excavated Natural Material (VENM). This classification would only apply where this is segregated from the fill material, and not mixed with other man-made materials or other wastes.

9. Conceptual Site Model

A conceptual site model (CSM) is a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is summarised in Table 9-1 below.

Table 9-1: Conceptual Site Model

Source	Contaminant & Known Location	Potential Transport Mechanisms	Exposure Pathway	Receptors
Bonded fragments of asbestos fibre cement sheeting	Beneath the houses at 20 and 22 Mindarie Street. Access to beneath the house at 30 Pinaroo Place was not available.	Disturbance via construction/ maintenance subsurface works Dispersion via wind if exposed	Inhalation of airborne fibres	Construction workers during redevelopment of the site. Users of adjoining land during excavation works (if undertaken) and future site users. Construction workers (future maintenance involving excavation) Future site users (residential)
Fill deposits impacted with zinc (EIL)	• Zinc in sample BH04_0.0-0.1 (410mg/kg)		Uptake from vegetation and terrestrial ecosystem	Terrestrial ecosystems and future landscaping. (potentially complete where fill containing zinc is used as planting medium for future landscaping

10. Discussion

The results of this DSI did not identify contamination concentrations exceeding the adopted human health criteria for high density residential land uses. An exceedance above the ecological criteria for zinc was reported in surface fill material at sampling location BH04 and may present a potential risk to ecological receptors should this soil be used for future landscaping. It is noted however that the surface topsoil will likely be removed from the site during redevelopment, and therefore the risk to the ecological receptors is considered to be low. It is recommended that landscaping areas (if proposed) are constructed using certified planting medium.

Asbestos fibre cement sheet fragments were observed on surface fill material beneath the houses at both 20 and 22 Mindarie Street. The source of the fragments is unknown but may be associated with building materials within each house. Appropriate waste classification and off-site disposal of this material is required following demolition of the site structures. It is noted that access to beneath the house at 30 Pinaroo Place was not available.

11. Conclusions and Recommendations

Based on a review of available data, observations made during fieldwork and an assessment of laboratory analytical data, Coffey makes the following conclusions:

- The site is currently occupied by three separate low-density residential dwellings, which were observed to be in good condition.
- The typical soil profile across the site consisted of a thin layer of topsoil fill material, underlain by weathered sandstone bedrock.
- Results of the soil investigation did not identify soil contamination concentrations exceeding the adopted human health criteria within soil samples analysed from the seven boreholes BH01 to BH07.
- An exceedance above the ecological criteria for zinc was reported in shallow material at one sampling location, presenting a potential risk to ecological receptors should this soil be used for future landscaping.

In summary, based on the findings of the investigation and in consideration of the key conclusions outlined above, Coffey concludes that the site can be made suitable for the proposed high-density residential land use, provided the following recommendations are implemented:

- Remedial Action Plan (RAP) it is recommended that a RAP is developed that presents the
 preferred remedial strategy to manage contamination impacts (specifically, Asbestos) identified
 and thereby make the site suitable for the proposed use. The RAP should also include an
 Unexpected Finds Protocol (UFP) which will manage unexpected contamination encountered
 during redevelopment of the site, as well as a process for classifying surplus soil materials that
 will be removed from the site during redevelopment.
- Asbestos Removal Control Plan which will outline how hazardous building materials will be removed prior to the demolition of site buildings in accordance with relevant legalisation, and to prevent potential cross contamination of the soils at the site.

This report should be read in conjunction with the attached "Important information about your Coffey Environmental Report".

12. References

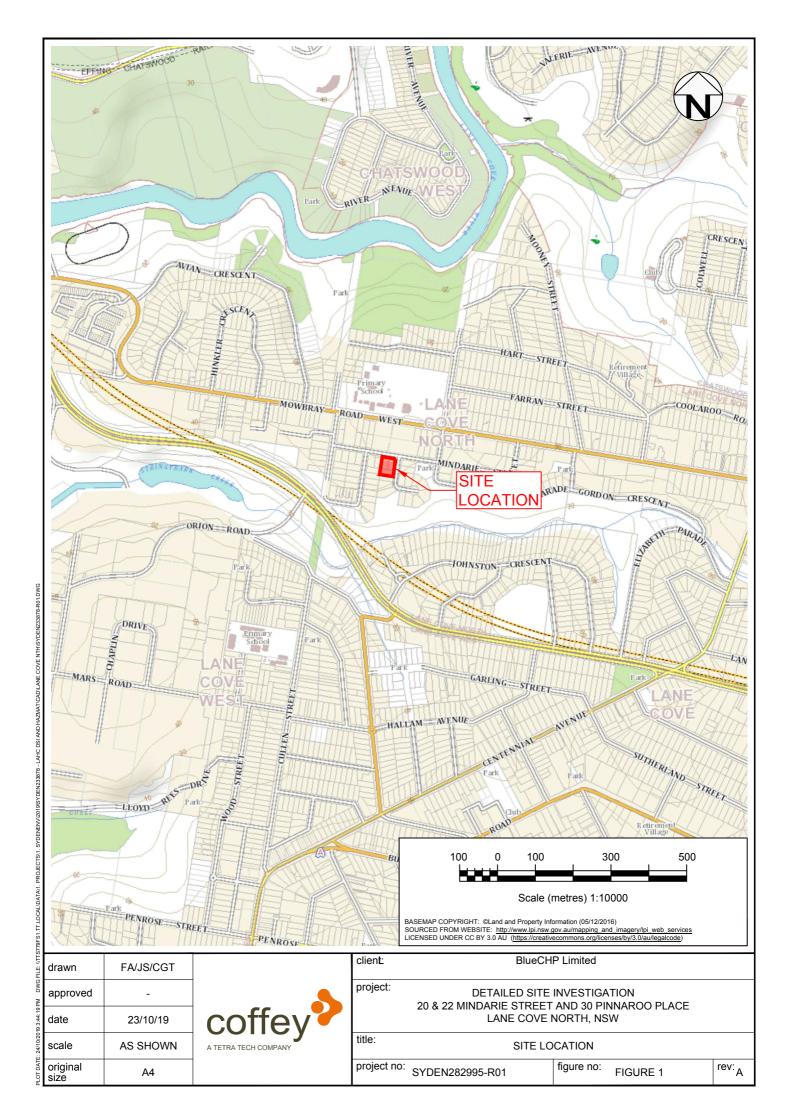
AS4482.1 (2005) Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil [Parts 1 and 2].

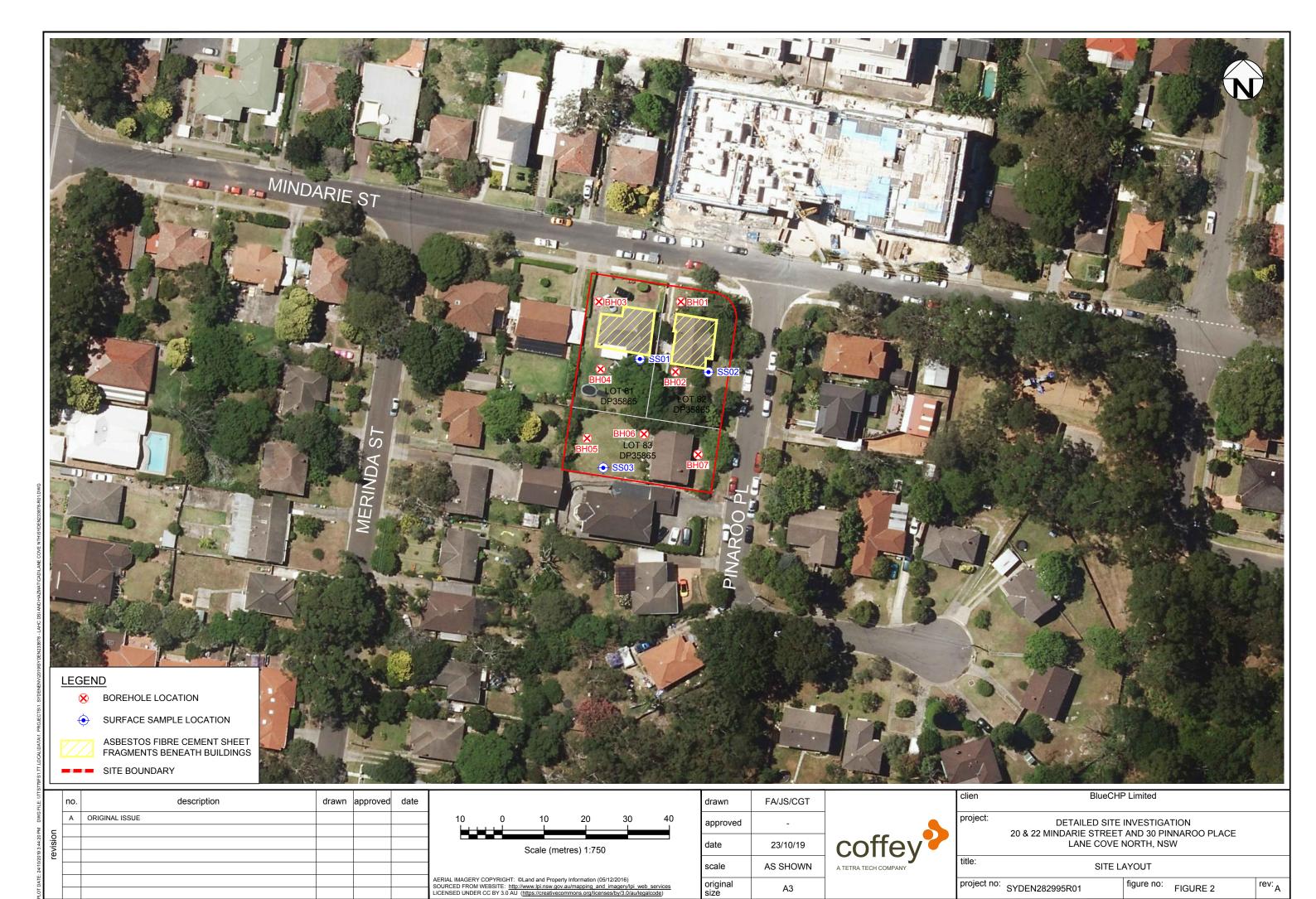
Coffey (2017), Preliminary Contamination Assessment, 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW, dated 20 January 2017, report ref. SYDEN198927-R06.

Coffey (2019), Pre-Demolition Asbestos and Hazardous Materials Survey, 20-22 Mindarie Street and 30 Pinaroo Place, Lane Cove North NSW, 2066, dated 1 November 2019.

NEPC (2013); National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended 2013). (ASC NEPM) National Environment Protection Council.

NSW OEH (2011); Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW Office of Environment and Heritage.²


NSW EPA (2014). Waste Classification Guidelines, Part 1: Classifying Waste. New South Wales Environment Protection Authority.


NSW EPA (1995) Sampling Design Guidelines, Contaminated Sites

_

² Note: this guideline has been replaced since this report was prepared. Coffey considers that the change in reporting guideline does not have a material effect on the current applicability of this report.

Appendix A – Figures

original size

A3

project no: SYDEN282995R01

figure no: FIGURE 2

rev: A

Appendix B – Tables

				Asbestos	Phys	sical Parai	meters				Heavy	/ Metals							To	otal Reco	verable H	ydrocarbo	ns							BTEX				PAHS				PCBs			He	rbicides	/ Pesticides
				sbestos - Presence / Absence	ation Exchange Capacity (CEC)	Aoisture Content (dried @ 103°C)	H (aqueous extract)	rsenic	admium	hromium	opper	ron	lickel	pea	inc	1 (C6-C10)	1 (C6-C10) less BTEX	2 (C10-C16 Hydrocarbons)	3 (C16-C34 Hydrocarbons)	34-C40	10 - C40 (Sum of total)	2 C10-C16 (minus Naphthalene) 6 - C9	25.00	10 - C14	15 - C28 29-C36	C10 - C36 (Sum of total)	enzene	thylbenzene	oluene	ylenes Total	ylene (o)	ylenes (m & p)	enzo(a) pyrene	AHs (Sum of total)	roclor 1260	rodor 1254	rodor 1232	rodor 1248	roclor 1016	roclor 1242	CBs (Sum of total)	lerbici des	IOPs
					meg/10	00g %	pH Units	mg/kg	mg/kg	mg/kg r	ng/kg m	g/kg mg/l	kg mg/l	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	g/kg mg/	kg mg	/kg mg	g/kg mg/l	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	ng/kg mg	/kg mg/k	g mg/kg	mg/kg	mg/kg mg	/kg mg/	kg mg/k	g mg/kg	mg/kg m	ıg/kg m	g/kg mg	4/kg mg/kg
EQL				Detected		1						20 0.1										50 20																		0.1			
NEPC (2013) Table :	LA(1) HILs Reside	ential - B Soil						500	150	3	0000	120	120	0 1200	60000																		00	400							1		
NEPC (2013) Table :	IA(3) Res A/B So	il HSL for Vapour Intrusion	n, Sand 0-1m														45				- 1	110					0.5	55	160	40		3								7			
NEPC (2013) EILs Ur	ban Residential	/ public open space (4), (5)					100		210 ⁽⁶⁾ 3	310 ⁽³⁾		40	⁷⁾ 1260	350 ⁽¹⁾																	17	0									18	tO (2)
NEPC (2013) Table :	IB(6) ESLs for Ur	ban Residential, Coarse So	oil 0-2m										- 10		-		180		300	2800		120					50	70	85	105			0.7										
CRC CARE (2011) Re	sidenital A (Dire	ct Contact)														4400		4400	4500	6300							100	4500	14,000	12,000		14	00										
		ent Limits in Residential / F	Parkland, Coarse Soil													700		1000	2500	10000																							
Field_ID	Sample_Dep	th_Range Matrix_Descr	iption Location_Code																																						\perp		
BH01_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-					45			1 39		92	<20	<20	<50				<50 <2	_	_	30 63			<0.1	<0.1			<0.2 <0		-	-			-		-	- <l< td=""><td>LOR <l< td=""><td>OR <lor< td=""></lor<></td></l<></td></l<>	LOR <l< td=""><td>OR <lor< td=""></lor<></td></l<>	OR <lor< td=""></lor<>
BH01_0.3-0.4	0.3-0.4	NATURAL	Lane Cove North	-	4.6		7.2	11	_			,000 <0.:	_		17	<20	<20	<50	<100	<100		<50 <2			50 <50		<0.1	<0.1	<0.1	<0.3	_	<0.2 <0		-	1				+			-	
BH02_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	- :-	17		2.8	-		39	- <0.:	_		51	<20	<20	<50	<100	<100		<50 <2	_		50 <50		<0.1	<0.1	<0.1	<0.3	-	<0.2 <0		<0.5	-	<0.1 <0		_	-		-	_	OR <lor< td=""></lor<>
BH02_0.1-0.2	0.1-0.2	NATURAL	Lane Cove North	-	3.8		6.3	2.3				300 <0.:	_		12	<20	<20	<50	<100	<100		<50 <2			50 <50		<0.1	<0.1	<0.1	<0.3	_	<0.2 <0	_	-	-		_	_					
BH03_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-		-	3.8	_	_	29	- <0.:	_		270	<20	<20	<50	<100	<100		<50 <2	0 <2	20 <	50 <50		<0.1	<0.1	<0.1	<0.3	_	<0.2 <0		<0.5	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	l <0.1				OR <lor< td=""></lor<>
BH04_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-	21	-	_	1.4		74	- <0.:	_		410	<20	<20	<50	<100	<100	<100	<50 <2	0 <2	20 <	50 <50		<0.1	<0.1	<0.1	<0.3	-	<0.2 <0		-	-					-		_	OR <lor< td=""></lor<>
BH05_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-	19	-	5		_	170	- <0.:	_		210	<20	<20	<50	<100	<100	<100	<50 <2	0 <2	20 <	50 <50		<0.1	<0.1	<0.1	<0.3		<0.2 <0	.5 -	-	-		-			-	- <i< td=""><td></td><td>OR <lor< td=""></lor<></td></i<>		OR <lor< td=""></lor<>
BH05_0.1-0.2	0.1-0.2	NATURAL	Lane Cove North	-	-	18	-	5.6		_	87	- <0.:			110	<20	<20	<50	<100	<100	<100	<50 <2	0 <2	_	50 <50		<0.1	<0.1	<0.1	<0.3	<0.1	<0.2 <0	.5 -	-	-		-			-	-		
BH06_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-	21	-	9.6	-		25	- <0.:			300	<20	<20	<50	<100	<100		<50 <2	0 <2	-	50 <50		<0.1	<0.1	<0.1	<0.3	-	<0.2 <0		<0.5	<0.1	<0.1 <0	0.1 < 0.1	1 <0.1	l <0.1	<0.1 <			OR <lor< td=""></lor<>
BH07_0.0-01	0.0-0.1	FILL	Lane Cove North	ND	-	17	-	2.8	-	_	5.8	- <0.:	_	-	47	<20	<20	<50	150	<100		<50 <2	_		50 130		<0.1	<0.1	<0.1	<0.3	-	<0.2 <0	-	-				-	\perp	+-+	_		OR <lor< td=""></lor<>
BH07_0.1-0.2	0.1-0.2	NATURAL	Lane Cove North	-	-	16	-	6.9	<0.4	37	6.1	- <0.:	1 <5	29	59	<20	<20	<50	<100	<100	<100 <	<50 <2	0 <2	20 <	50 <50	0 <50	<0.1	<0.1	<0.1	<0.3	<0.1	<0.2 <0	.5 <0.5	<0.5				-	+-	-		-	
SS01	Surface	FILL	Lane Cove North	ND	-	-	-	1 -	-	-	-		-	-	-	-	-		-	-	-		-	-	- -	-	-	-	-	-	-		-	-				-	\perp	+-+	-	-	
SS02	Surface	FILL	Lane Cove North	ND	-	-	-	1 -	-	-	-		-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-		-	-	-			-	-	-	-	-	
SS03	Surface	FILL	Lane Cove North	ND	-	-	-		-	-	-		-	-	-	-	-	- 1	-	-	-		- -	-		-		-	-	-	-		-	-	-		- -	-	-	-	-	-	

| Notes:
| Notes:
| Notes: Not

Chem_Group	ChemName	Units	EQL	
BTEX	Benzene	mg/kg	0.1	<0.1
	Ethylbenzene	mg/kg	0.1	<0.1
	Toluene	mg/kg	0.1	<0.1
	Xylenes Total	mg/kg	0.3	< 0.3
	Xylene (o)	mg/kg	0.1	<0.1
	Xylenes (m & p)	mg/kg	0.2	< 0.2
	Total BTEX	mg/kg	0.2	
Total Petroleum Hydrocarbons	C6 - C9	mg/kg	10	<20
Total Recoverable Hydrocarbons	F1 (C6-C10)	mg/kg	10	<20
-	F1 (C6-C10) less BTEX	mg/kg	10	<20
Field Blanks (water)			SDG	8-Oct-19
Filter: ALL			Field ID	RB01
			Sampled Date/Time	8/10/2019
			Sample Type	Rinsate

Chem_Group	ChemName	Units	EQL	
BTEX	Benzene	μg/l	1	<1
	Ethylbenzene	μg/l	1	<1
	Toluene	μg/l	1	<1
	Xylenes Total	μg/l	3	<3
	Xylene (o)	μg/l	1	<1
	Xylenes (m & p)	μg/l	2	<2
Matala	Annels		0.004	0.004
Metals	Arsenic	mg/l	0.001	<0.001
	Cadmium	mg/l	0.0002	< 0.0002
	Chromium	mg/l	0.001	< 0.001
	Copper	mg/l	0.001	< 0.001
	Mercury	mg/l	0.0001	< 0.0001
	Nickel	mg/l	0.001	< 0.001
	Lead	mg/l	0.001	< 0.001
	Zinc	mg/l	0.005	< 0.005
Total Petroleum Hydrocarbons	C6 - C9	μg/l	20	<20
	C10 - C14	μg/l	50	<50
	C15 - C28	μg/l	100	<100
	C29-C36	μg/l	100	<100
	+C10 - C36 (Sum of total)	μg/l	100	<100
Total Recoverable Hydrocarbons	F1 (C6-C10)	μg/l	20	<20
Total Recoverable Hydrocalbons	F1 (C6-C10) less BTEX	µg/l	20	<20
	F2 (C10-C16 Hydrocarbons)	μg/l	50	<50
	F3 (C16-C34 Hydrocarbons)	μg/l	100	<100
	C34-C40	µg/l	100	<100
	C10 - C40 (Sum of total)		100	<100
	F2 C10-C16 (minus Nanhthalana)	μg/l	50	<100

Appendix C - Borehole Logs

Blue CHP Limited

Environmental Log - Hand Auger

Hole ID. **BH1** sheet: 1 of 1

project no. **754-SYDEN282995**

date started: 08 Oct 2019

principal: date completed: 08 Oct 2019

project: Detailed Site Investigation logged by: AC location: 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW checked by: JS

JS location: checked by: position: Not Specified surface elevation: Not Specified angle from horizontal: 90° equipment type: Hand Auger drilling fluid: hole diameter : 100 mm drilling information material substance photoionization detector (ppmv material description structure and samples & soil group symbol additional observations Ξ moisture condition method & support field tests SOIL NAME: plasticity or particle characteristic, Ξ depth (colour, secondary and minor components R E: BH01_0.0-0.1 SP FILL: Gravelly SAND: fine to medium grained, low М No asbestos, odour or staining. plasticity, Brown, with some organic material. 0.4 SC CLAYEY SAND: fine to medium grained, medium to No odour or staining low plasticity, Orange/red, Weathered sandstone. ş E: BH01 0.3-0.4 0.4 Hand Auger BH1 terminated at 0.40 m Terminated on hard sandstone bedrock 0.5 1.0 1.5 samples & field tests
ALT air lift test
B bulk disturbed sample method support soil group symbol & consistency / relative density auger drilling* mud soil description very soft casing auger screwing* based on AS 1726:2017 S F disturbed sample soft nill НΑ hand auger environmental sample MR St VSt mud rotary 99 split spoon sample stiff W moisture condition D dry very stiff undisturbed sample ##mm diameter U## H Fb WS water sample hard moist wet friable HB hammer bouncing VL 10-Oct-12 water level on date shown very loose loose bit shown by suffix standard penetration test (SPT) Wp plastic limit WI liquid limit e.g. B N* SPT - sample recovered SPT with solid cone AD/T MD blank bit medium dense vater inflow TC bit water outflow PID photoionization detector dense VD very dense

Blue CHP Limited

Detailed Site Investigation

Environmental Log - Hand Auger

Hole ID. BH2 sheet: 1 of 1

754-SYDEN282995 project no.

date started: 08 Oct 2019

08 Oct 2019 principal: date completed:

project: logged by: AC shookad h 20 & 22 Mindarie Street & 30 Pinaroo Place I and Cove North NSW ıc

locat	ion:	20 & 22 Mil	ndari	e St	reet	& 30	Pina	roo Place, Lane Cove North, NSW	chec	ked by:	JS
position	on: N	lot Specified					surf	ace elevation: Not Specified ar	gle from ho	orizontal:	90°
equip	ment	type: Hand Auger					drill	ing fluid: hc	n		
drilli	ing in	formation				mate	rial sub	stance			
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	structure and additional observations
	Not Encountered	E: BH02_0.0-0.1	0.4				SM	FILL: SILTY SAND: fine to medium grained, low liqu limit, Brown.		S	No asbestos, odour or staining
₩ H	Not Enc	E: BH02_0.1-0.2			-		SC	Sandy CLAY: fine to medium grained, low plasticity, orange / brown.		MD	No odour or staining
			0.4		0.5			Hand Auger BH2 terminated at 0.20 m Target depth Terminated on hard sandstone bedrock			-
					1.0 -						
					1.5 —						
meth AD AS HA MR W	auge hand mud was	k bit vit	suppo M mi C ca N nill	ud sing I	Oct-12 wa	shown	# E E E E E E E E E E E E E E E E E E E	so bulk disturbed sample based environmental sample environmental sample sylit spoon sample undisturbed sample ##mm diameter water sample ##mm diameter water sample ##mm diameter water sample standard penetration test (SPT) # SPT - sample recovered SPT with solid cone SPT with solid cone	group symb il description on AS 1720 condition st tic limit d limit	on	consistency/relative density VS S S S Soft F F firm St St Stiff VSt Very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

project:

Environmental Log - Hand Auger

Detailed Site Investigation

Hole ID. BH3 sheet: 1 of 1

logged by:

754-SYDEN282995 project no.

AC

Blue CHP Limited date started: 08 Oct 2019

08 Oct 2019 principal: date completed:

location:	20 & 22 Mi	ndari	e St	reet	& 30 	Pina	roo Place, Lane Cove North,	, NSW	check	ed by:	JS
position: I	Not Specified					surf	ace elevation: Not Specified	angle	from hor	izontal:	90°
equipment	type: Hand Auger	: Hand Auger drilling fluid: hole diameter : 100 mm									n
drilling in	nformation				mate	rial sub	stance				
method & support water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle charac colour, secondary and minor compor	cteristic, nents	moisture condition	consistency / relative density	structure and additional observations
Not Encountered W:	E: BH03_0.0-0.1	(5.8) 0.5	R	0.5—	10 Aug	os CI	FILL: SILTY SAND: fine to medium graine liquid limit, Brown, Some organic material. Hand Auger BH3 terminated at 0.10 m Target depth Terminated on hard sandstone bedrock	ed, medium	# 8 M		No asbestos, odour or staining
AS aug HA han MR mud W was * bit s e.g. AD/	nk bit	suppo M mu C cas N nill	ud sing I	1.5 —	shown	# E E E E E E E E E E E E E E E E E E E	disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter water sample ## hammer bouncing standard penetration test (SPT)		ndition	n	consistency/ relative density VS Sery soft F F F F F F T VS VS Very stiff VS VS Very stiff VS VS Very stiff VS VS VERY VO VS

project:

Environmental Log - Hand Auger

Detailed Site Investigation

Hole ID. BH4 sheet: 1 of 1

logged by:

754-SYDEN282995 project no.

AC

Blue CHP Limited client: date started: 08 Oct 2019

08 Oct 2019 principal: date completed:

locat	tion:	20 & 22 Mil	ndarı	e St	reet	& 30	Pina	roo Place, Lane Cove Norti	n, NSW	check	ed by:	JS
		lot Specified					surf	ace elevation: Not Specified	angle	from hor	rizontal:	90°
_		type: Hand Auger					drilli	ing fluid:	hole o	diameter	: 100 mr	n
drill	ing in	formation				mate	rial sub	stance				T
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle chara colour, secondary and minor comp		moisture condition	consistency / relative density	structure and additional observations
HA H	Not Encountered	E: BH04_0.0-0.1	0.5		_		SM	FILL: SILTY SAND: fine to medium grain limit, Brown, with some organic material.	ned, low liquid	М	S	No asbestos, odour or staining
OUTOUT_EIDTANTI, GED 1997AU LAG OUT DONKETOLE. EINVINCHMENTAL 1945 I DETROSORIOGEN SCHOOLING 19.13	N N				0.5 —			Hand Auger BH4 terminated at 0.20 m Target depth Terminated on hard sandstone bedrock				
meth AD AS HA MR W	auge auge hand mud was	k bit	suppo M mi C ca N nill	ud sing I	oct-12 wa on date : r inflow	ter shown	ESUV	disturbed sample environmental sample solutions sample solutions solutions sample undisturbed sample ##mm diameter water sample hammer bouncing standard penetration test (SPT)		ndition limit	n	consistency/ relative density VS S very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

Blue CHP Limited

Environmental Log - Hand Auger

Hole ID. **BH5** sheet: 1 of 1

project no. **754-SYDEN282995**

date started: 08 Oct 2019

principal: date completed: 08 Oct 2019

project: Detailed Site Investigation logged by: AC

location: 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW checked by: JS

	on: N	lot Specified						ace elevation: Not Specified	angle fro		izontal:	90°
equipi	ment 1	type: Hand Auger					drilli	ng fluid:	hole diar	meter	: 100 mn	n
drilli	ng in	formation				mate	rial sub	stance				
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	1	moisture condition	consistency / relative density	structure and additional observations
4	Not Encountered	E: BH05_0.0-0.1	0.3				SM	FILL: SILTY SAND : fine to medium grained, low li limit, Brown, with some organic material.	iquid	М	S	No asbestos, odour or staining
Ì	Not Enc	E: BH05_0.1-0.2	0.4		_		SC	CLAYEY SAND : fine to medium grained, low plasticity.			MD	No odour or staining
					_			Hand Auger BH5 terminated at 0.20 m Target depth Terminated on hard sandstone bedrock				
					0.5 —							
					1.0—							
					_							
					1.5 —							
					-							
					_							
meth AD AS HA MR W	auge auge hand mud	er drilling* er screwing* d auger rotary hbore	suppo M mi C ca: N nill	ud sing			E E E S U	bulk disturbed sample disturbed sample environmental sample S split spoon sample ## undisturbed sample ##mm diameter /S water sample	soil group soil desc sed on AS ure condit dry moist	1726	n	consistency/relative density VS Very soft S S Soft F F firm St VSt Very stiff H hard Fb frields
* e.g. B T V	bit sl AD/7 bland TC b V bit	k bit vit	water	level wate	ort-12 wa on date : r inflow r outflow	shown	N	standard penetration test (SPT) * SPT - sample recovered c SPT with solid cone ID photoionization detector	moist wet plastic lim liquid limit	nit t		VL very loose L loose MD medium dense D dense VD very dense

Blue CHP Limited

Environmental Log - Hand Auger

Hole ID. **BH6** sheet: 1 of 1

project no. **754-SYDEN282995**

date started: 08 Oct 2019

principal: date completed: 08 Oct 2019

project: Detailed Site Investigation logged by: AC

location: 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW checked by: JS

l .		Not Specified						ace elevation: Not Specified	•	angle from horizontal: 90°				
<u> </u>		type: Hand Auger						ng fluid:	hole diamet	er : 100 m	m			
	ing in	samples &	ation pmv)				rial sub	stance material description		y / nsity	structure and			
method & support	water	field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	SOIL NAME: plasticity or particle chai colour, secondary and minor comp	racteristic, ponents	consistency / relative density	additional observations			
♦ HA ♦	ountered	E: BH06_0.0-0.1	0.4				SM	FILL: SILTY SAND: fine to medium gra medium liquid limit, Brown, with some or	ined, low to Mganic matter.		No asbestos, odour or staining			
<u> </u>	Not Encountered				- 0.5 —			Hand Auger BH6 terminated at 0.10 m Target depth Terminated on hard sandstone bedrock						
meth AD AS HA MR W	auger drilling* auger screwing* hand auger mud rotary washbore bit shown by suffix		support M mud C casing N nill water 10-Oct-12 wat level on date s				samples & field tests ALT air lift test B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter WS water sample HB hammer bouncing N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone		soil group syr soil descrip based on AS 17 moisture condition D dry M moist W wet Wp plastic limit W liquid limit	tion 26:2017	consistency/relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense			

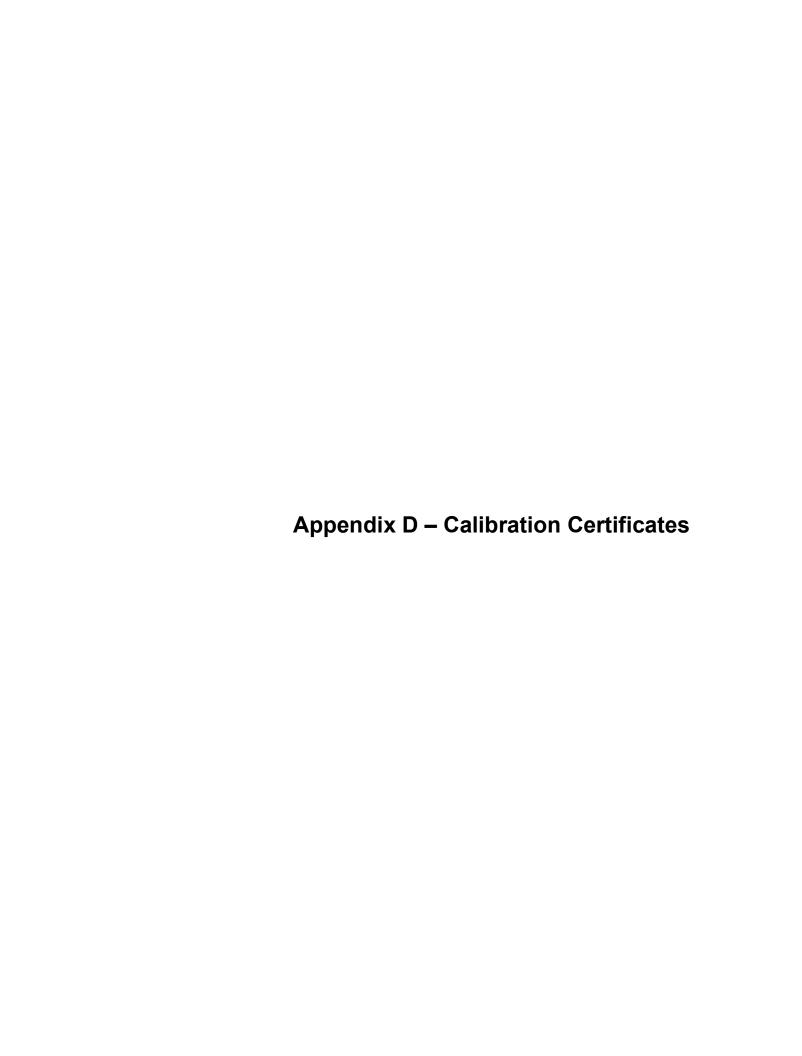
principal:

Blue CHP Limited

Environmental Log - Hand Auger

Hole ID. **BH7** sheet: 1 of 1

project no. **754-SYDEN282995**


date started: 08 Oct 2019

date completed: 08 Oct 2019

project: **Detailed Site Investigation** logged by: **AC**

location: 20 & 22 Mindarie Street & 30 Pinaroo Place, Lane Cove North, NSW checked by: JS

position: Not Specified surface elevation: Not Specified angle from horizontal: 90													
equipment type: Hand Auger drilling fluid:								_	hole diameter : 100 mm				
drilli	ng in	formation	- S			mate	rial sub				_		
memod & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle charac colour, secondary and minor compor	cteristic, nents	moisture condition	consistency / relative density	structure and additional observations	
	Not Encountered	E: BH07_0.0-0.1	0.4		-		SM	FILL: SILTY SAND: fine to medium graine medium liquid limit, Brown.	ed, low to	М	S MD	No asbestos, odour or staining No odour or staining	
VII	Not En	E: BH07_0.2-0.3	0.4		-		SC	CLAYEY SAND: fine to medium grained, I medium plasticity, Mottled red/orange.	ow to				
					0.5 —			Hand Auger BH7 terminated at 0.40 m Target depth Terminated on hard sandstone bedrock					
					1.0								
					1.5 —								
metho AD		er drilling*	suppo M m	ud	-		F	iamples & field tests NLT air lift test		oup symbo		consistency/relative density	
AS auger screwing* HA hand auger MR mud rotary W washbore * bit shown by suffix e.g. AD/T B blank bit T TC bit C casing N nill water 10-Oct-12 water					on date or inflow	shown N* SPT - sample recovered NC SPT with solid cone			soil description based on AS 1726:2017 moisture condition D dry M moist W wet Wp plastic limit WI liquid limit			VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

PID Calibration Certificate

Instrument

PhoCheck Tiger

Serial No.

T-115200

Air-Met Scientific Pty Ltd 1300 137 067

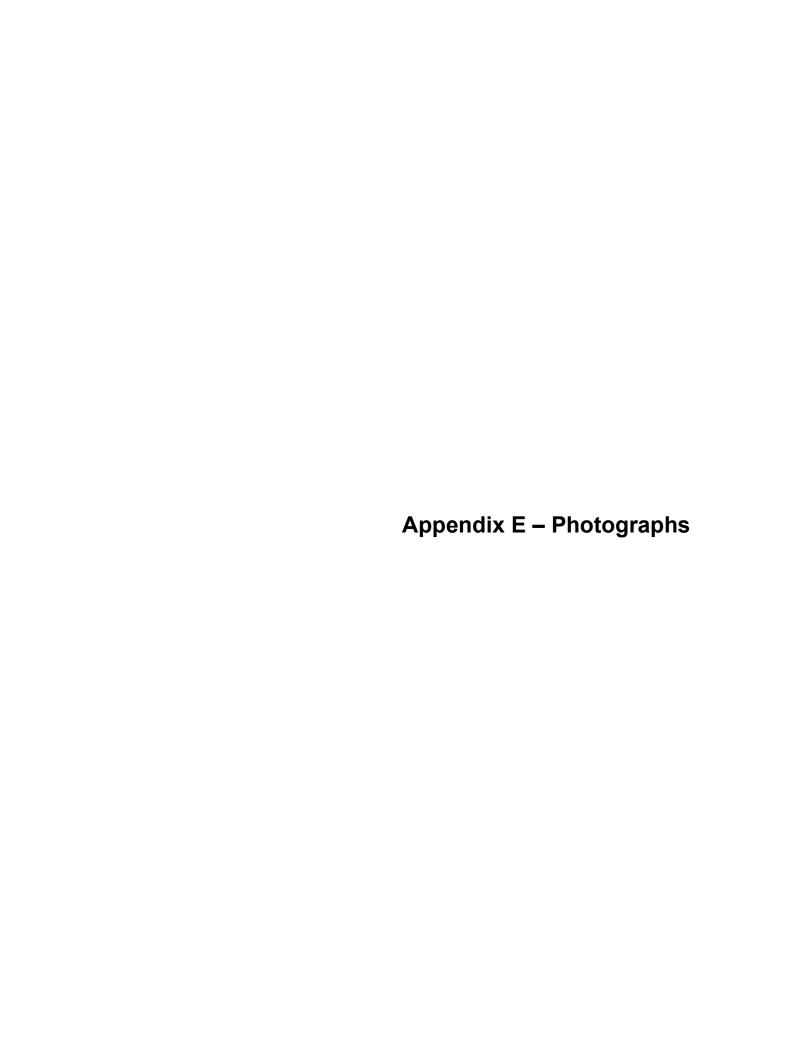
Item	Test	Pass			Comments	S
Battery	Charge Condition	✓				
•	Fuses	✓				
	Capacity	✓				
	Recharge OK?	✓	74.			
Switch/keypad	Operation	✓				
Display	Intensity	✓		nus comezenas en		
	Operation (segments)	✓	1 4			
Grill Filter	Condition	✓	7 1 1			
	Seal	- 1				
Pump	Operation	✓				
	Filter	✓				
	Flow	✓				
	Valves, Diaphragm	✓				
PCB	Condition	✓				
Connectors	Condition	✓				
Sensor	PID	✓	10.6 ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm		
Software	Version	✓				
Data logger	Operation	✓				
Download	Operation	✓				
Other tests:						

Post sampling results

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	Instrument Reading
		concentration		No	
PID Lamp		92ppm Isobutylene	NATA	SY245	91.2ppm

Calibrated by:


Sen Philip

Calibration date:

2/10/2019

Next calibration due:

1/11/2019

Appendix E: Selected Site Photographs

Photograph 1:

Fragments of asbestos fibre cement sheeting beneath the dwelling located at 22 Mindarie Street.

Photograph 2:

Condition of soil surrounding the dwelling at 20 Mindarie Street.

Photograph 3:

Driveway and stockpile of mulch at 22 Mindarie Street.

Photograph 4:

Condition of external building at 22 Mindarie Street.

Photograph 5:

Condition of dwelling and grass lawn at 30 Pinaroo Place.

Photograph 6:

Sandstone outcrop observed on the eastern site boundary at 30 Pinaroo Place.

Photograph 7: Fill material encountered within borehole BH04

Photograph 8: Weathered sandstone bedrock encountered in BH01.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jessie Sixsmith

 Report
 681323-W

 Project name
 LAHC DSI

 Project ID
 SYDEN233878-LC

 Received Date
 Oct 08, 2019

Client Sample ID			RB01
Sample Matrix			Water
Eurofins Sample No.			S19-Oc11692
Date Sampled			Oct 08, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	142
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 09, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Oct 09, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 09, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 09, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Melbourne	Oct 09, 2019	180 Days
- Method:			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

+61 2 9406 1000

+61 2 9406 1004

5000 La Ph N

 Sydney
 B

 Unit F3, Building F
 1/

 16 Mars Road
 M

 Lane Cove West NSW 2066
 P

 Phone : +61 2 9900 8400
 N

 NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYDEN233878-LC

 Order No.:
 Received:
 Oct 8, 2019 5:12 PM

 Report #:
 681323
 Due:
 Oct 15, 2019

Due: Oct 15, 2019 **Priority:** 5 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х									Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794															
Pert	h Laboratory - N	NATA Site # 237	'36															
Exte	rnal Laboratory			1	1													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH01_0.0-01	Oct 08, 2019		Soil	S19-Oc11678	Х						Х	Х	Х			Х	
2	BH01_0.3-0.4	Oct 08, 2019		Soil	S19-Oc11679			Х	Х					Х	Х		Х	
3	BH02_0.0-01	Oct 08, 2019		Soil	S19-Oc11680	Х					Х	Х	Х	Х		Х		
4	BH02_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11681			Х	Х					Х	Х		Х	
5	BH03_0.0-01	Oct 08, 2019		Soil	S19-Oc11682	Х					Х	Х	Х	Х		Х		
6	BH04_0.0-01	Oct 08, 2019		Soil	S19-Oc11683	Х						Х	Х	Х			Х	
7	BH05_0.0-01	Oct 08, 2019		Soil	S19-Oc11684	Х						Х	Х	Х			Х	
8	BH05_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11685									Х			Х	
9	BH06_0.0-01	Oct 08, 2019		Soil	S19-Oc11686	Х					Х	Χ	Χ	Х		Х		

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 9

Date Reported:Oct 15, 2019

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Priority:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID:

SYDEN233878-LC

Order No.: Received: Oct 8, 2019 5:12 PM Report #: 681323

Due: Oct 15, 2019

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

5 Day

		San	nple Detail		Asbestos - AS4964	CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site #	‡ 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	3217		Х	Х									Χ	Х	Χ
Bris	bane Laborator	y - NATA Site # 2	20794														
Pert	h Laboratory - N	NATA Site # 2373															
10	BH07_0.0-01	Oct 08, 2019	Soil	S19-Oc11687	Х						Х	Х	Х			Х	
11	BH07_0.1-0.2	Oct 08, 2019	Soil	S19-Oc11688					Х				Х			Χ	
12	SS01	Oct 08, 2019	Soil	S19-Oc11689	Х												
13	SS02	Oct 08, 2019	Soil	S19-Oc11690	Х												
14	SS03	Oct 08, 2019	Soil	S19-Oc11691	Х												
15	RB01	Oct 08, 2019	Water	S19-Oc11692												Χ	
16	ТВ	Oct 08, 2019	Soil	S19-Oc11693													Х
17	TS	Oct 08, 2019	Soil	S19-Oc11694		Х											
18	DUP01	Oct 08, 2019	Soil	S19-Oc11695									Х			Х	
19	DUP02	Oct 08, 2019	Soil	S19-Oc11696									Х			Х	
20	SPIKELAB	Oct 08, 2019	Soil	S19-Oc13433		Х											
Test	Counts				10	2	2	2	1	3	7	7	13	2	3	11	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank				1 5.55	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	1119/2	1 0.000	0.000	1 455	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	84	70-130	Pass	
LCS - % Recovery	70	04	70 130	1 433	
BTEX					
Benzene	%	100	70-130	Pass	
Toluene	%	98	70-130	Pass	
Ethylbenzene	%	94	70-130	Pass	
m&p-Xylenes	%	87	70-130	Pass	
Xylenes - Total	%	89	70-130	Pass	
LCS - % Recovery	/0	09	10-130	Fass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
	%	101	70-130	Poss	
Naphthalene	%	101		Pass	
TRH C6-C10		96	70-130	Pass	
TRH > C10-C16	%	78	70-130	Pass	
LCS - % Recovery					
Heavy Metals	0/	07	00.400	Desir	
Arsenic	%	97	80-120	Pass	
Cadmium	%	97	80-120	Pass	
Chromium	%	99	80-120	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Copper			%	91			80-120	Pass	
Lead			%	96			80-120	Pass	
Mercury			%	94			75-125	Pass	
Nickel			%	95			80-120	Pass	
Zinc			%	89			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		_		Τ	1 1		1		
Total Recoverable Hydrocarbons				Result 1				_	
TRH C6-C9	M19-Oc11877	NCP	%	95			70-130	Pass	
TRH C10-C14	M19-Oc10407	NCP	%	86			70-130	Pass	
Spike - % Recovery				T	<u> </u>			ı	
BTEX	1			Result 1					
Benzene	M19-Oc11877	NCP	%	101			70-130	Pass	
Toluene	M19-Oc11877	NCP	%	96			70-130	Pass	
Ethylbenzene	M19-Oc11877	NCP	%	91			70-130	Pass	
m&p-Xylenes	M19-Oc11877	NCP	%	82			70-130	Pass	
o-Xylene	M19-Oc11877	NCP	%	86			70-130	Pass	
Xylenes - Total	M19-Oc11877	NCP	%	83			70-130	Pass	
Spike - % Recovery								ı	
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1					
Naphthalene	M19-Oc11877	NCP	%	96			70-130	Pass	
TRH C6-C10	M19-Oc11877	NCP	%	93			70-130	Pass	
TRH >C10-C16	M19-Oc10407	NCP	%	79			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M19-Oc10982	NCP	%	99			75-125	Pass	
Cadmium	M19-Oc10982	NCP	%	101			75-125	Pass	
Chromium	M19-Oc10982	NCP	%	101			75-125	Pass	
Copper	M19-Oc10982	NCP	%	85			75-125	Pass	
Lead	M19-Oc10982	NCP	%	97			75-125	Pass	
Mercury	M19-Oc10982	NCP	%	90			70-130	Pass	
Nickel	M19-Oc10982	NCP	%	98			75-125	Pass	
Zinc	M19-Oc10982	NCP	%	87			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD	1		
TRH C6-C9	M19-Oc11893	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M19-Oc10406	NCP	mg/L	0.41	0.48	14	30%	Pass	
TRH C15-C28	M19-Oc10406	NCP	mg/L	0.9	0.6	38	30%	Fail	Q15
TRH C29-C36	M19-Oc10406	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD			
Benzene	M19-Oc11893	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M19-Oc11893	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M19-Oc11893	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M19-Oc11893	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M19-Oc11893	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M19-Oc11893	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-Oc11893	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M19-Oc11893	NCP	mg/L	< 0.02	0.02	170	30%	Fail	Q15
TRH >C10-C16	M19-Oc10406	NCP	mg/L	0.53	0.54	2.0	30%	Pass	
TRH >C16-C34	M19-Oc10406	NCP	mg/L	0.6	0.4	47	30%	Fail	Q15
TRH >C34-C40	M19-Oc10406	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-Oc10982	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M19-Oc10982	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M19-Oc10982	NCP	mg/L	0.003	0.003	8.0	30%	Pass	
Copper	M19-Oc10982	NCP	mg/L	0.13	0.13	1.0	30%	Pass	
Lead	M19-Oc10982	NCP	mg/L	0.001	0.001	6.0	30%	Pass	
Mercury	M19-Oc10982	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M19-Oc10982	NCP	mg/L	0.002	0.002	1.0	30%	Pass	
Zinc	M19-Oc10982	NCP	mg/L	0.097	0.10	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Ursula Long Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to styr production arising from this report. This document shall not be reporteduced except in full and relates only to the letters tested. Unless indicated to therewise, the testes were performed on the samples as received.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jessie Sixsmith

 Report
 681323-S

 Project name
 LAHC DSI

 Project ID
 SYDEN233878-LC

 Received Date
 Oct 08, 2019

Client Sample ID			BH01_0.0-01	BH01_0.3-0.4	BH02_0.0-01	BH02_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11678	S19-Oc11679	S19-Oc11680	S19-Oc11681
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	160	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	160	< 100	< 100	< 100
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	130	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	63	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	193	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	53	62	127
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			BH01_0.0-01	BH01_0.3-0.4	BH02_0.0-01	BH02_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11678	S19-Oc11679	S19-Oc11680	S19-Oc11681
•			Oct 08, 2019		İ	Oct 08, 2019
Date Sampled	1.00	11.7	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u> </u>					
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene Total PALI*	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg %	-	-	< 0.5 70	-
2-Fluorobiphenyl (surr.)	1	%	-	-	76	-
p-Terphenyl-d14 (surr.)	l I	70	-	=	76	-
Organochlorine Pesticides	0.4		0.4		0.4	
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05 0.05	mg/kg	< 0.05 < 0.05	-	< 0.05 < 0.05	-
Endosulfan I	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	
Endosulfan sulphate	0.05	mg/kg	< 0.05		< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	_	< 0.05	
Endrin ketone	0.05	mg/kg	< 0.05	_	< 0.05	<u> </u>
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	_	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	< 0.05	_
Methoxychlor	0.05	mg/kg	< 0.05	_	< 0.05	_
Toxaphene	1	mg/kg	< 1	_	< 1	_
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	_	< 0.05	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	_	< 0.05	_
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	_	< 0.1	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	_	< 0.1	-
Dibutylchlorendate (surr.)	1	%	92	_	84	_
Tetrachloro-m-xylene (surr.)	1	%	77	-	73	_
Organophosphorus Pesticides					1	
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	_
Bolstar	0.2	mg/kg	< 0.2	_	< 0.2	_
Chlorfenvinphos	0.2	mg/kg	< 0.2	_	< 0.2	_
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	_	< 0.2	_
Coumaphos	2	mg/kg	< 2	_	< 2	_
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	_
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	_
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	_
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	_

Client Sample ID			BH01_0.0-01	BH01_0.3-0.4	BH02_0.0-01	BH02_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11678	S19-Oc11679	S19-Oc11680	S19-Oc11681
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•	'				
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	_
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-
EPN	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-	< 2	-
Naled	0.2	mg/kg	< 0.2	-	< 0.2	-
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	101	-	84	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	84	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	73	-
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4-DB	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4.5-T	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4.5-TP	0.5	mg/kg	< 0.5	-	< 0.5	-
Actril (loxynil)	0.5	mg/kg	< 0.5	-	< 0.5	-
Dicamba	0.5	mg/kg	< 0.5	-	< 0.5	-
Dichlorprop	0.5	mg/kg	< 0.5	-	< 0.5	-
Dinitro-o-cresol	0.5	mg/kg	< 0.5	-	< 0.5	-
Dinoseb	0.5	mg/kg	< 0.5	-	< 0.5	-
MCPA	0.5	mg/kg	< 0.5	-	< 0.5	-
МСРВ	0.5	mg/kg	< 0.5	-	< 0.5	-
Mecoprop	0.5	mg/kg	< 0.5	-	< 0.5	-
Warfarin (surr.)	1	%	107	-	120	_

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH01_0.0-01 Soil S19-Oc11678 Oct 08, 2019	BH01_0.3-0.4 Soil S19-Oc11679 Oct 08, 2019	BH02_0.0-01 Soil S19-Oc11680 Oct 08, 2019	BH02_0.1-0.2 Soil S19-Oc11681 Oct 08, 2019
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	54	-	55
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	7.2	-	6.3
% Moisture	1	%	9.4	13	17	11
Heavy Metals						
Arsenic	2	mg/kg	5.1	11	2.8	2.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	45	43	9.4	8.7
Copper	5	mg/kg	34	17	39	6.3
Iron	20	mg/kg	-	31000	-	9300
Lead	5	mg/kg	120	16	32	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	39	< 5	< 5	< 5
Zinc	5	mg/kg	92	17	51	12
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	4.6	-	3.8

Client Sample ID			BH03_0.0-01	BH04_0.0-01	BH05_0.0-01	BH05_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11682	S19-Oc11683	S19-Oc11684	S19-Oc11685
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	118	114	86

Client Sample ID			BH03_0.0-01	BH04_0.0-01	BH05_0.0-01	BH05_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11682	S19-Oc11683	S19-Oc11684	S19-Oc1168
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	=	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	70	-	-	-
p-Terphenyl-d14 (surr.)	1	%	80	-	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
o-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Toxaphene	1	mg/kg	< 1	< 1	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	83	97	93	-

Client Commis ID			Bullon	Duna o o o o	DU05 0 0 04	DU05 0400
Client Sample ID			BH03_0.0-01	BH04_0.0-01	BH05_0.0-01	BH05_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11682	S19-Oc11683	S19-Oc11684	S19-Oc11685
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		_				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Coumaphos	2	mg/kg	< 2	< 2	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Monocrotophos	2	mg/kg	< 2	< 2	< 2	-
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Omethoate	2	mg/kg	< 2	< 2	< 2	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	90	98	98	-
Polychlorinated Biphenyls		_				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	83	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	75	-	-	-

Client Sample ID			BH03_0.0-01	BH04_0.0-01	BH05_0.0-01	BH05_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11682	S19-Oc11683	S19-Oc11684	S19-Oc11685
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Acid Herbicides	•	•				
2.4-D	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dicamba	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
MCPA	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
МСРВ	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Warfarin (surr.)	1	%	113	118	105	-
% Moisture	1	%	16	21	19	18
Heavy Metals	•	•				
Arsenic	2	mg/kg	3.8	5.8	5.0	5.6
Cadmium	0.4	mg/kg	0.7	1.4	2.5	1.3
Chromium	5	mg/kg	13	29	19	15
Copper	5	mg/kg	29	74	170	87
Lead	5	mg/kg	240	230	78	39
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	8.8	< 5	< 5
Zinc	5	mg/kg	270	410	210	110

Client Sample ID Sample Matrix Eurofins Sample No.			BH06_0.0-01 Soil S19-Oc11686	BH07_0.0-01 Soil S19-Oc11687	BH07_0.1-0.2 Soil S19-Oc11688	TB Soil S19-Oc11693
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit		00100, 2010	00100, 2010	00100, 2010
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	150	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	150	< 100	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	130	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	130	< 50	-

Client Sample ID			BH06_0.0-01	BH07_0.0-01	BH07_0.1-0.2	ТВ
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11686	S19-Oc11687	S19-Oc11688	S19-Oc11693
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
ВТЕХ	1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	95	99	69	91
Polycyclic Aromatic Hydrocarbons	ļ.					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	_	1.2	_
Acenaphthene	0.5	mg/kg	< 0.5	_	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	_	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	_	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	_
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	_
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	_
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	_
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	95	-	74	_
p-Terphenyl-d14 (surr.)	1	%	112	-	81	-
Organochlorine Pesticides	- I					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	=	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	=	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	=	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	=	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	=	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	_
Heptachlor	0.05	mg/kg	< 0.05	0.07	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	0.46	_	_

Client Sample ID			BH06_0.0-01	BH07_0.0-01	BH07_0.1-0.2	тв
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11686	S19-Oc11687	S19-Oc11688	S19-Oc11693
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit		Í	,	
Organochlorine Pesticides	1 2011	O. III				
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	_
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	_	_
Toxaphene	1	mg/kg	< 1	< 1	_	_
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	_	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	_	_
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	0.53	-	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	0.53	-	_
Dibutylchlorendate (surr.)	1	%	80	104	-	_
Tetrachloro-m-xylene (surr.)	1	%	100	101	-	-
Organophosphorus Pesticides	<u> </u>	,,,				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	_	_
Bolstar	0.2	mg/kg	< 0.2	< 0.2	_	_
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	_	_
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	_	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	_	_
Coumaphos	2	mg/kg	< 2	< 2	_	_
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	_
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	_	_
Diazinon	0.2	mg/kg	< 0.2	< 0.2	_	_
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-	-
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	-
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-	-
EPN	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethion	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Malathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Monocrotophos	2	mg/kg	< 2	< 2	-	-
Naled	0.2	mg/kg	< 0.2	< 0.2	-	-
Omethoate	2	mg/kg	< 2	< 2	-	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	-	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	138	87	-	-

Client Sample ID			BH06_0.0-01	BH07_0.0-01	BH07_0.1-0.2	ТВ
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc11686	S19-Oc11687	S19-Oc11688	S19-Oc11693
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls		•				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	80	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	100	-	-	-
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	< 0.5	-	-
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	-	-
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	-	-
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	-	-
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	-	-
Dicamba	0.5	mg/kg	< 0.5	< 0.5	-	-
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	-	-
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	-	-
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	-	-
MCPA	0.5	mg/kg	< 0.5	< 0.5	=	-
МСРВ	0.5	mg/kg	< 0.5	< 0.5	-	-
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	=	-
Warfarin (surr.)	1	%	84	124	-	-
% Moisture	1	%	21	17	16	-
Heavy Metals						
Arsenic	2	mg/kg	9.6	2.8	6.9	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	15	10	37	-
Copper	5	mg/kg	25	5.8	6.1	-
Lead	5	mg/kg	89	45	29	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	6.5	< 5	< 5	-
Zinc	5	mg/kg	300	47	59	-

Client Sample ID			DUP01	DUP02
Sample Matrix			Soil	Soil
Eurofins Sample No.			S19-Oc11695	S19-Oc11696
Date Sampled			Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100

Client Sample ID			DUP01	DUP02
Sample Matrix			Soil	Soil
Eurofins Sample No.			S19-Oc11695	S19-Oc11696
Date Sampled			Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions	'		
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	110
TRH C10-C36 (Total)	50	mg/kg	< 50	110
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	87	90
% Moisture	1	%	20	19
Heavy Metals				
Arsenic	2	mg/kg	4.1	2.9
Cadmium	0.4	mg/kg	1.1	< 0.4
Chromium	5	mg/kg	14	9.2
Copper	5	mg/kg	64	5.3
Lead	5	mg/kg	170	34
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	8.0	< 5
Zinc	5	mg/kg	320	42

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Oct 09, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			_
BTEX	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 11, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Melbourne	Oct 11, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B7			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Eurofins mgt Suite B14			
Organochlorine Pesticides	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8081)			
Polychlorinated Biphenyls	Melbourne	Oct 11, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
Acid Herbicides	Melbourne	Oct 11, 2019	14 Days
- Method: LTM-ORG-2180 Phenoxy Acid Herbicides			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Oct 09, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Heavy Metals	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Oct 09, 2019	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Oct 10, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Melbourne	Oct 08, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

681323

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYDEN233878-LC

Received: Oct 8, 2019 5:12 PM

 Due:
 Oct 15, 2019

 Priority:
 5 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	Time BH01_0.0-01 Oct 08, 2019 Soil S19- BH01_0.3-0.4 Oct 08, 2019 Soil S19- BH02_0.0-01 Oct 08, 2019 Soil S19- BH02_0.1-0.2 Oct 08, 2019 Soil S19- BH03_0.0-01 Oct 08, 2019 Soil S19- BH04_0.0-01 Oct 08, 2019 Soil S19- BH05_0.0-01 Oct 08, 2019 Soil S19- BH05_0.0-01 Oct 08, 2019 Soil S19- BH05_0.0-01 Oct 08, 2019 Soil S19- BH05_0.1-0.2 Oct 08, 2019 Soil S19- BH05_0.1-0.2 Oct 08, 2019 Soil S19-							Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х									Х	Χ	X
Bris	bane Laborator	y - NATA Site #	20794															
Pert	h Laboratory - N	NATA Site # 237	36															
Exte	rnal Laboratory	<u>'</u>																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH01_0.0-01	Oct 08, 2019		Soil	S19-Oc11678	Х						Х	Х	Х			Х	
2	BH01_0.3-0.4	Oct 08, 2019		Soil	S19-Oc11679			Х	Х					Х	Х		Х	
3	BH02_0.0-01	Oct 08, 2019		Soil	S19-Oc11680	Х					Х	Х	Х	Х		Х		
4	BH02_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11681			Х	Х					Х	Х		Х	
5	_	Oct 08, 2019		Soil	S19-Oc11682	Х					Х	Х	Х	Х		Х		
6	BH04_0.0-01	Oct 08, 2019		Soil	S19-Oc11683	Х						Х	Х	Х			Х	
7	BH05_0.0-01	Oct 08, 2019		Soil	S19-Oc11684	Х						Х	Х	Х			Х	
8	BH05_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11685									Х			Х	
9	BH06_0.0-01	Oct 08, 2019		Soil	S19-Oc11686	Х					Х	Х	Х	Χ		Х		

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

681323

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYE

SYDEN233878-LC

Contact Name: Jessie Sixsmith

5 Day

Oct 8, 2019 5:12 PM

Oct 15, 2019

Eurofins Analytical Services Manager: Ursula Long

		Saı	mple Detail		Asbestos - AS4964	CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271				Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	
Syd	ney Laboratory	- NATA Site # 18	8217		Х	Х									Χ	Х	Χ
Bris	bane Laborator	y - NATA Site #	20794														
Pert	h Laboratory - N	NATA Site # 237	36														
10	BH07_0.0-01	Oct 08, 2019	Soil	S19-Oc11687	Х						Χ	Х	Χ			Χ	
11	BH07_0.1-0.2	Oct 08, 2019	Soil	S19-Oc11688					Х				Χ			Χ	
12	SS01	Oct 08, 2019	Soil	S19-Oc11689	Х												
13	SS02	Oct 08, 2019	Soil	S19-Oc11690	Х												
14	SS03	Oct 08, 2019	Soil	S19-Oc11691	Х												
15	RB01	Oct 08, 2019	Water	S19-Oc11692												Χ	
16	ТВ	Oct 08, 2019	Soil	S19-Oc11693													Х
17	TS	Oct 08, 2019	Soil	S19-Oc11694		Х											
18	DUP01	Oct 08, 2019	Soil	S19-Oc11695									Χ			Χ	
19	DUP02	Oct 08, 2019	Soil	S19-Oc11696									Χ			Χ	
20	SPIKELAB	Oct 08, 2019	Soil	S19-Oc13433		Х											
Test	Counts				10	2	2	2	1	3	7	7	13	2	3	11	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank	, ,			•	
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	<u> </u>				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	<u> </u>				
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank				•	
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN		< 0.2	0.2	Pass	
Ethion	mg/kg		0.2	Pass	
	mg/kg	< 0.2	0.2		
Ethoprop	mg/kg	< 0.2		Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			1		
Polychlorinated Biphenyls	1				
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Acid Herbicides					
2.4-D	mg/kg	< 0.5	0.5	Pass	
2.4-DB	mg/kg	< 0.5	0.5	Pass	
2.4.5-T	mg/kg	< 0.5	0.5	Pass	
2.4.5-TP	mg/kg	< 0.5	0.5	Pass	
Actril (loxynil)	mg/kg	< 0.5	0.5	Pass	
Dicamba	mg/kg	< 0.5	0.5	Pass	
Dichlorprop	mg/kg	< 0.5	0.5	Pass	
Dinitro-o-cresol	mg/kg	< 0.5	0.5	Pass	
Dinoseb	mg/kg	< 0.5	0.5	Pass	
MCPA	mg/kg	< 0.5	0.5	Pass	
MCPB	mg/kg	< 0.5	0.5	Pass	
Mecoprop	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Iron	mg/kg	< 20	20	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	87	70-130	Pass	
TRH C6-C10	%	102	70-130	Pass	
TRH >C10-C16	%	105	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	112	70-130	Pass	
TRH C10-C14	%	109	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	104	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	109	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
Xylenes - Total	%	106	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	101	70-130	Pass	
Acenaphthylene	%	102	70-130	Pass	
Anthracene	%	102	70-130	Pass	
Benz(a)anthracene	%	94	70-130	Pass	
Benzo(a)pyrene	%	104	70-130	Pass	
Benzo(b&j)fluoranthene	%	120	70-130	Pass	
Delizo(DXI)liuolalililelle	/ / /				

	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Debarcya handhracene	Benzo(k)fluoranthene	%	129	70-130	Pass	
Fluoranthene	Chrysene	%	103	70-130	Pass	
Fluorene	Dibenz(a.h)anthracene	%	109	70-130	Pass	
Indennot 2.3-cd)pyrene	Fluoranthene	%	102	70-130	Pass	
Naphthalene	Fluorene	%	103	70-130	Pass	
Penandriene	Indeno(1.2.3-cd)pyrene	%	108	70-130	Pass	
Penanthrene % 110 70-130 Pass	Naphthalene	%	99	70-130	Pass	
Pyrane	Phenanthrene		110	70-130	Pass	
CGS - % Recovery		i i	103	70-130	Pass	
Organochlorine Pesticides Brown of the pesticides Chlordanes - Total % 79 70-130 Pass 4.4*-DDE % 128 70-130 Pass 4.4*-DDT % 86 70-130 Pass a-BHC % 85 70-130 Pass Aldrin % 84 70-130 Pass Aldrin % 82 70-130 Pass BHC % 82 70-130 Pass BHC % 82 70-130 Pass BHC % 82 70-130 Pass Endosulfan I % 83 70-130 Pass Endosulfan I % 83 70-130 Pass Endisin sulphate % 78 70-130 Pass Endrin sulphate % 78 70-130 Pass Endrin sulphate % 78 70-130 Pass Endrin sulphate % 78 70-130 Pass	•	<u> </u>				
Chloradnes - Total						
4.4-DDD		%	79	70-130	Pass	
4.4-DDE			1			
A4-DDT						
a-BHC						
Aldrin						
b-BHC						
d-BHC						
Dieldrin						
Endosulfan						
Endosulfan II						
Endosulfan sulphate						
Endrin						
Endrin aldehyde	•					
Endrin ketone						
g-BHC (Lindane) % 86 70-130 Pass Heptachlor % 81 70-130 Pass Heptachlor epoxide % 77 70-130 Pass Hexachlorobenzene % 88 70-130 Pass Methoxychlor % 84 70-130 Pass LCS - % Recovery V 106 70-130 Pass LCS - % Recovery V 106 70-130 Pass Ethion % 75 70-130 Pass Ethion % 99 70-130 Pass Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Methyl parathion % 89 70-130 Pass Polychlorinated Biphenyls						
Heptachlor						
Heptachlor epoxide	· · · · · · · · · · · · · · · · · · ·				Pass	
Hexachlorobenzene	Heptachlor				Pass	
Methoxychlor % 84 70-130 Pass LCS - % Recovery Digranophosphorus Pesticides Diazinon % 106 70-130 Pass Dimethoate % 75 70-130 Pass Ethion % 99 70-130 Pass Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery Polychlorinated Biphenyls Arcolor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides 2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4-S-TP % 80 70-130 Pass 2.4-S-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass D	Heptachlor epoxide	%	77	70-130	Pass	
Cranophosphorus Pesticides	Hexachlorobenzene	%	88	70-130	Pass	
Organophosphorus Pesticides % 106 70-130 Pass Diazinon % 75 70-130 Pass Ethion % 99 70-130 Pass Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery **** Polychlorinated Biphenyls** Aroclor-1260 % 87 70-130 Pass LCS - % Recovery **** Acid Herbicides** 2.4-D % 87 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4-DT % 80 70-130 Pass 2.4-S-TP % 87	Methoxychlor	%	84	70-130	Pass	
Diazinon % 106 70-130 Pass	LCS - % Recovery				,	
Dimethoate % 75 70-130 Pass Ethion % 99 70-130 Pass Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery *** *** 70-130 Pass LCS - % Recovery *** *** 70-130 Pass LCS - % Recovery *** *** *** 70-130 Pass LCS - % Recovery *** *** *** 70-130 Pass LCS - % Recovery *** *** *** 70-130 Pass LCS - % Recovery *** *** ** 70-130 Pass LCS - % Recovery *** *** ** 70-130 Pass 2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-TP	Organophosphorus Pesticides					
Ethion % 99 70-130 Pass Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery Polychlorinated Biphenyls Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides 2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass	Diazinon	%	106	70-130	Pass	
Fenitrothion % 102 70-130 Pass Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery Polychlorinated Biphenyls Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides 2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-TP % 77 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 81 70-130 Pass	Dimethoate	%	75	70-130	Pass	
Methyl parathion % 111 70-130 Pass Mevinphos % 89 70-130 Pass LCS - % Recovery Polychlorinated Biphenyls Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Pass Pass Pass 2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 81 70-130 Pass	Ethion	%	99	70-130	Pass	
Mevinphos % 89 70-130 Pass LCS - % Recovery Polychlorinated Biphenyls 87 70-130 Pass Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides 70-130 Pass 2.4-DB % 77 70-130 Pass 2.4-5-T % 77 70-130 Pass 2.4-5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 81 70-130 Pass	Fenitrothion	%	102	70-130	Pass	
CCS - % Recovery Polychlorinated Biphenyls	Methyl parathion	%	111	70-130	Pass	
Polychlorinated Biphenyls Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides	Mevinphos	%	89	70-130	Pass	
Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides Image: Control of the pass o	LCS - % Recovery					
Aroclor-1260 % 87 70-130 Pass LCS - % Recovery Acid Herbicides Image: Control of the pass o	Polychlorinated Biphenyls					
LCS - % Recovery Acid Herbicides % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass		%	87	70-130	Pass	
Acid Herbicides % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
2.4-D % 77 70-130 Pass 2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
2.4-DB % 80 70-130 Pass 2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass		%	77	70-130	Pass	
2.4.5-T % 77 70-130 Pass 2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
2.4.5-TP % 92 70-130 Pass Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass			1			
Actril (loxynil) % 87 70-130 Pass Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
Dicamba % 91 70-130 Pass Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
Dichlorprop % 105 70-130 Pass Dinitro-o-cresol % 81 70-130 Pass						
Dinitro-o-cresol % 81 70-130 Pass						
	• •					
MCPA % 72 70-130 Pass						

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
МСРВ			%	72		70-130	Pass	
Mecoprop			%	86		70-130	Pass	
LCS - % Recovery				•				
Heavy Metals								
Arsenic			%	106		80-120	Pass	
Cadmium			%	90		80-120	Pass	
Chromium			%	110		80-120	Pass	
Copper			%	114		80-120	Pass	
Iron			%	117		80-120	Pass	
Lead			%	116		80-120	Pass	
Mercury			%	94		75-125	Pass	
Nickel			%	110		80-120	Pass	
Zinc			%	107		80-120	Pass	
ZIIIC		04	70	107				Ouglifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1			
Total Recoverable Hydrocarbons	2013 NEPM Fract	1		Result 1				
Naphthalene	M19-Oc13294	NCP	%	79		70-130	Pass	
TRH C6-C10	M19-Oc13294	NCP	%	83		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons		ions		Result 1				
TRH C6-C9	M19-Oc13294	NCP	%	89		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M19-Oc13294	NCP	%	90		70-130	Pass	
Toluene	M19-Oc13294	NCP	%	78		70-130	Pass	
Ethylbenzene	M19-Oc13294	NCP	%	88		70-130	Pass	
m&p-Xylenes	M19-Oc13294	NCP	%	87		70-130	Pass	
o-Xylene	M19-Oc13294	NCP	%	88		70-130	Pass	
Xylenes - Total	M19-Oc13294	NCP	%	87		70-130	Pass	
Spike - % Recovery	1	1101	,,,	<u>.</u>		10 .00	. 400	
Organochlorine Pesticides				Result 1				
Chlordanes - Total	M19-Oc14500	NCP	%	78		70-130	Pass	
4.4'-DDD	M19-Oc14500	NCP	%	96		70-130	Pass	
4.4'-DDE	M19-Oc14500	NCP	%	85		70-130	Pass	
				1				
4.4'-DDT	M19-Oc14500	NCP	%	92		70-130	Pass	
a-BHC	M19-Oc14500	NCP	%	76		70-130	Pass	
Aldrin	M19-Oc14500	NCP	%	78		70-130	Pass	
b-BHC	M19-Oc14500	NCP	%	97		70-130	Pass	
d-BHC	M19-Oc14500	NCP	%	72		70-130	Pass	
Dieldrin	M19-Oc14500	NCP	%	81		70-130	Pass	
Endosulfan I	M19-Oc14500	NCP	%	93		70-130	Pass	
Endosulfan II	M19-Oc14500	NCP	%	82		70-130	Pass	
Endosulfan sulphate	M19-Oc14500	NCP	%	80		70-130	Pass	
Endrin	M19-Oc14500	NCP	%	88		70-130	Pass	
Endrin aldehyde	M19-Oc14500	NCP	%	101		70-130	Pass	
Endrin ketone	M19-Oc14500	NCP	%	84		70-130	Pass	
g-BHC (Lindane)	M19-Oc14500	NCP	%	93		70-130	Pass	
Heptachlor	M19-Oc14500	NCP	%	86		70-130	Pass	
Heptachlor epoxide	M19-Oc14500	NCP	%	71		70-130	Pass	
Hexachlorobenzene	M19-Oc14500	NCP	%	78		70-130	Pass	
Methoxychlor	M19-Oc07334	NCP	%	75		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	S19-Oc12822	NCP	%	130		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dimethoate	S19-Oc12822	NCP	%	92	70-130	Pass	
Ethion	S19-Oc12822	NCP	%	95	70-130	Pass	
Fenitrothion	S19-Oc12822	NCP	%	90	70-130	Pass	
Methyl parathion	S19-Oc12822	NCP	%	73	70-130	Pass	
Mevinphos	S19-Oc12822	NCP	%	77	70-130	Pass	
Spike - % Recovery							
Acid Herbicides				Result 1			
2.4-D	M19-Oc10957	NCP	%	58	70-130	Fail	Q08
Actril (loxynil)	M19-Oc10957	NCP	%	101	70-130	Pass	
Dichlorprop	M19-Oc10957	NCP	%	112	70-130	Pass	
МСРА	M19-Oc10957	NCP	%	60	70-130	Fail	Q08
МСРВ	M19-Oc10957	NCP	%	43	70-130	Fail	Q08
Spike - % Recovery				•			
Heavy Metals				Result 1			
Zinc	S19-Oc08209	NCP	%	83	75-125	Pass	
Spike - % Recovery			7-2			1 3.60	
Heavy Metals				Result 1			
Iron	S19-Oc08428	NCP	%	182	75-125	Fail	Q08
Spike - % Recovery	1 010 0000420	1401	/0	102	10-120	i all	Q00
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	M19-Oc14504	NCP	%	81	70-130	Pass	
Aroclor-1260	M19-Oc14504	NCP	// 0	102	70-130	Pass	
	W119-OC14304	INCF	/0	102	70-130	r ass	
Spike - % Recovery	2012 NEDM Front	lana		Dogult 1			
Total Recoverable Hydrocarbons			0/	Result 1	70.400	Dana	
TRH >C10-C16	S19-Oc11686	CP	%	100	70-130	Pass	
Spike - % Recovery	4000 NEDM 5			Donali 4			
Total Recoverable Hydrocarbons			0/	Result 1	70.400	D	
TRH C10-C14	S19-Oc11686	CP	%	106	70-130	Pass	
Spike - % Recovery				Donali 4			
Heavy Metals	040 0-44000	0.0	0/	Result 1	75.405	D	
Arsenic	S19-Oc11686	CP	%	87	75-125	Pass	
Cadmium	S19-Oc11686	CP	%	84	75-125	Pass	
Chromium	S19-Oc11686	CP	%	104	75-125	Pass	
Copper	S19-Oc11686	CP	%	209	75-125	Fail	Q08
Lead	S19-Oc11686	CP	%	86	75-125	Pass	
Mercury	S19-Oc11686	CP	%	94	70-130	Pass	
Nickel	S19-Oc11686	CP	%	97	75-125	Pass	
Spike - % Recovery				I			
Polycyclic Aromatic Hydrocarbon				Result 1			
Acenaphthene	S19-Oc11688	CP	%	77	70-130	Pass	
Acenaphthylene	S19-Oc11688	CP	%	80	70-130	Pass	
Anthracene	S19-Oc11688	CP	%	79	70-130	Pass	
Benz(a)anthracene	S19-Oc11688	CP	%	76	70-130	Pass	
Benzo(a)pyrene	S19-Oc11688	CP	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Oc11688	CP	%	85	70-130	Pass	
Benzo(g.h.i)perylene	S19-Oc11688	CP	%	80	70-130	Pass	
Benzo(k)fluoranthene	S19-Oc11688	CP	%	76	70-130	Pass	
Chrysene	S19-Oc11688	CP	%	77	70-130	Pass	
Dibenz(a.h)anthracene	S19-Oc11688	CP	%	96	70-130	Pass	
Fluoranthene	S19-Oc11688	CP	%	77	70-130	Pass	
Fluorene	S19-Oc11688	CP	%	81	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Oc11688	CP	%	82	70-130	Pass	
Naphthalene	S19-Oc11688	СР	%	76	70-130	Pass	
Phenanthrene	S19-Oc11688	СР	%	77	70-130	Pass	
Pyrene	S19-Oc11688	СР	%	71	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S19-Oc12824	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S19-Oc12824	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S19-Oc12824	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S19-Oc12824	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Terbufos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S19-Oc12824	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate	319-0012024	INCI	ilig/kg	V 0.2	\ 0.Z		30 /0	1 033	
Acid Herbicides				Result 1	Result 2	RPD			
2.4-D	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-DB	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-T	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-TP	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Actril (loxynil)	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dicamba	M19-Oc10956	NCP		< 0.5	< 0.5	<u><1</u>	30%	Pass	
Dichlorprop	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
• •	M19-Oc10956	NCP	mg/kg		1	<u><1</u>	30%	1 -	
Dinitro-o-cresol			mg/kg	< 0.5	< 0.5		 	Pass	
Dinoseb	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPB	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M19-Oc10956	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				D !! 4	D	DDD			
Conductivity /4 5				Result 1	Result 2	RPD		+ +	
Conductivity (1:5 aqueous extract at 25°C as rec.)	M19-Oc06747	NCP	uS/cm	260	300	13	30%	Pass	
pH (1:5 Aqueous extract at 25°C as		.,,	40,011	200	300	10	0070	1 400	
rec.)	M19-Oc06747	NCP	pH Units	9.8	9.7	pass	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-Oc11680	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Oc11680	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Oc11680	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S19-Oc11680	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Oc11680	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Oc11680	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Oc11680	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Oc11680	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Oc11680	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	010.0012024	1	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
•	S19-0c12824	NIL.P			, \ U.U	` -	J JU /0	1 000	
Dibenz(a.h)anthracene	S19-Oc12824	NCP				_1	30%	Pace	
Dibenz(a.h)anthracene Fluoranthene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30% 30%	Pass	
Dibenz(a.h)anthracene						<1 <1 <1	30% 30% 30%	Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon				Result 1	Result 2	RPD			
Phenanthrene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-Oc12824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	319-0012024	INCI	l Hig/kg	\ \ 0.5	_ < 0.5		30 70	1 033	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S19-Oc12824	NCP		< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S19-Oc12824	NCP	mg/kg mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S19-Oc12824	NCP		< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S19-Oc12824	NCP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	+	
Duplicate	519-0012824	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				Result 1	Result 2	RPD			
% Moisture	S19-Oc11683	CP	%	21	21	<1	30%	Pass	
Duplicate	1 010 0011000	<u> </u>	,,,				0070	1 466	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S19-Oc11685	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Oc11685	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-Oc11685	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	7 210 2011000	<u> </u>	g,g	1.00	1.00		3070		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S19-Oc11685	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Oc11685	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Oc11685	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate		<u> </u>		<u>'</u>	,			_	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Toxaphene	M19-Oc19491	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Oc11686	СР	mg/kg	9.6	10	5.0	30%	Pass	
Cadmium	S19-Oc11686	СР	mg/kg	< 0.4	0.4	6.0	30%	Pass	
Chromium	S19-Oc11686	СР	mg/kg	15	16	6.0	30%	Pass	
Copper	S19-Oc11686	СР	mg/kg	25	27	6.0	30%	Pass	
Iron	S19-Oc11686	СР	mg/kg	34000	36000	4.0	30%	Pass	
Lead	S19-Oc11686	СР	mg/kg	89	93	4.0	30%	Pass	
Mercury	S19-Oc11686	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Oc11686	СР	mg/kg	6.5	7.0	7.0	30%	Pass	
Zinc	S19-Oc11686	СР	mg/kg	300	310	4.0	30%	Pass	

Report Number: 681323-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Authorised By

N02

Ursula Long Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kay Senior Analyst-Inorganic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine be liable for consequential damages including, but not limited to, lost profits, damages for failure to me the deadlines and lost production arising from the record. This document in other personal descent in full and relates only to the lems tested. Unless the clearly characteristic way on the samples as exceived.

Certificate of Analysis

Environment Testing

Coffey Environments Pty Ltd NSW
Level 20, Tower B, Citadel Tower 799 Pacific Highway
Chatswood

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jessie Sixsmith
Report 681323-AID
Project Name LAHC DSI

Project ID SYDEN233878-LC

Received Date Oct 08, 2019 **Date Reported** Oct 15, 2019

Methodology:

Asbestos Fibre Identification

NSW 2067

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Date Reported: Oct 15, 2019

Environment Testing

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name LAHC DSI

Project ID SYDEN233878-LC

Date Sampled Oct 08, 2019 Report 681323-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH01_0.0-01	19-Oc11678	Oct 08, 2019	Approximate Sample 261g Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH02_0.0-01	19-Oc11680	Oct 08, 2019	Approximate Sample 186g Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH03_0.0-01	19-Oc11682	Oct 08, 2019	Approximate Sample 137g Sample consisted of: Dark brown fine-grained soil, bituminous material, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH04_0.0-01	19-Oc11683	Oct 08, 2019	Approximate Sample 130g Sample consisted of: Dark brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH05_0.0-01	19-Oc11684	Oct 08, 2019	Approximate Sample 128g Sample consisted of: Dark brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH06_0.0-01	19-Oc11686	Oct 08, 2019	Approximate Sample 112g Sample consisted of: Dark brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH07_0.0-01	19-Oc11687	Oct 08, 2019	Approximate Sample 139g Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS01	19-Oc11689	Oct 08, 2019	Approximate Sample 109g Sample consisted of: Dark brown fine-grained soil, bituminous material and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 681323-AID

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SS02	19-Oc11690	Oct 08, 2019	Sample consisted of: Brown fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS03	19-Oc11691	Oct 08, 2019	Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Page 3 of 8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyOct 08, 2019Indefinite

Report Number: 681323-AID

Environment Testing ABN - 50 005 085 521 ServiroSales@eurofins.com web: www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

681323

+61 2 9406 1000

+61 2 9406 1004

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Priority:

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID:

SYDEN233878-LC

Received: Oct 8, 2019 5:12 PM

Due: Oct 15, 2019

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

5 Day

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217							Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х									Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794															
Pert	h Laboratory - N	NATA Site # 237	36															
Exte	rnal Laboratory	<u> </u>																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH01_0.0-01	Oct 08, 2019		Soil	S19-Oc11678	Х						Х	Х	Х			Х	
2	BH01_0.3-0.4	Oct 08, 2019		Soil	S19-Oc11679			Х	Х					Х	Х		Х	
3	BH02_0.0-01	Oct 08, 2019		Soil	S19-Oc11680	Х					Х	Х	Х	Х		Х		
4	BH02_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11681			Х	Х					Х	Х		Х	
5	BH03_0.0-01	Oct 08, 2019		Soil	S19-Oc11682	Х					Х	Х	Х	Х		Х		
6	BH04_0.0-01	Oct 08, 2019		Soil	S19-Oc11683	Х						Х	Х	Х			Х	
7	BH05_0.0-01	Oct 08, 2019		Soil	S19-Oc11684	Х						Х	Х	Х			Х	
8	BH05_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11685									Х			Х	
9	BH06_0.0-01	Oct 08, 2019		Soil	S19-Oc11686	Х					Х	Х	Х	Х		Х		

Page 5 of 8

Environment Testing ABN - 50 005 085 521 ServiroSales@eurofins.com web: www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

681323

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Coffey

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYDEN233878-LC

Received: Oct 8, 2019 5:12 PM

Due: Oct 15, 2019 **Priority:** 5 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site #	1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217		Х	Х									Х	Χ	Х
Bris	bane Laborator	y - NATA Site # 2	0794														
Pert	h Laboratory - N	NATA Site # 2373	6														
10	BH07_0.0-01	Oct 08, 2019	Soil	S19-Oc11687	Х						Х	Х	Х			Χ	
11	BH07_0.1-0.2	Oct 08, 2019	Soil	S19-Oc11688					Х				Х			Χ	
12	SS01	Oct 08, 2019	Soil	S19-Oc11689	Х												
13	SS02	Oct 08, 2019	Soil	S19-Oc11690	Х												
14	SS03	Oct 08, 2019	Soil	S19-Oc11691	Х												
15	RB01	Oct 08, 2019	Water	S19-Oc11692												Х	
16	ТВ	Oct 08, 2019	Soil	S19-Oc11693													Х
17	TS	Oct 08, 2019	Soil	S19-Oc11694		Х											
18	DUP01	Oct 08, 2019	Soil	S19-Oc11695									Х			Χ	
19	DUP02	Oct 08, 2019	Soil	S19-Oc11696									Х			Χ	
20	SPIKELAB	Oct 08, 2019	Soil	S19-Oc13433		Х											
Test	Counts				10	2	2	2	1	3	7	7	13	2	3	11	1

Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Oct 15, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 7 of 8

Report Number: 681323-AID

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Oct 15, 2019

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 681323-AID

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYDEN233878-LC

Order No.: Report #:

Fax:

681323

Phone:

+61 2 9406 1000 +61 2 9406 1004 Priority: Contact Name:

Due:

Received:

5 Day Jessie Sixsmith

Oct 15, 2019

Oct 8, 2019 5:12 PM

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217						CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х									Х	Χ	Χ
Bris	bane Laborator	y - NATA Site#	20794															
Pert	h Laboratory - N	NATA Site # 237	'36															
Exte	rnal Laboratory	<u>, </u>																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH01_0.0-01	Oct 08, 2019		Soil	S19-Oc11678	Х						Х	Х	Х			Х	
2	BH01_0.3-0.4	Oct 08, 2019		Soil	S19-Oc11679			Х	Х					Х	Χ		Х	
3	BH02_0.0-01	Oct 08, 2019		Soil	S19-Oc11680	Х					Х	Х	Х	Х		Х		
4	BH02_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11681			Х	Х					Х	Х		Х	
5	BH03_0.0-01	Oct 08, 2019		Soil	S19-Oc11682	Х					Х	Х	Х	Х		Х		
6	BH04_0.0-01	Oct 08, 2019		Soil	S19-Oc11683	Х						Х	Х	Х			Х	
7	BH05_0.0-01	Oct 08, 2019		Soil	S19-Oc11684	Х						Х	Х	Х			Х	
8	BH05_0.1-0.2	Oct 08, 2019		Soil	S19-Oc11685									Х			Х	
9	BH06_0.0-01	Oct 08, 2019		Soil	S19-Oc11686	Х					Х	Х	Х	Х		Х		

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

681323

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

LAHC DSI

Project ID: SYDEN233878-LC

Received: Oct 8, 2019 5:12 PM

Due: Oct 15, 2019

Priority: 5 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						CANCELLED	Iron	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenyls	Acid Herbicides	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	Eurofins mgt Suite B6	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	3217			Х	Χ									Χ	Х	Х
Bris	bane Laborator	y - NATA Site # :	20794															
Pert	h Laboratory - N	NATA Site # 237	36															
10	BH07_0.0-01	Oct 08, 2019	Soil	S1	9-Oc11687	Х						Χ	Χ	Χ			Х	
11	BH07_0.1-0.2	Oct 08, 2019	Soil	S1	9-Oc11688					Х				Χ			Х	
12	SS01	Oct 08, 2019	Soil	S1	9-Oc11689	Х												
13	SS02	Oct 08, 2019	Soil	S1	9-Oc11690	Х												
14	SS03	Oct 08, 2019	Soil	S1	9-Oc11691	Х												
15	RB01	Oct 08, 2019	Wate	er S1	9-Oc11692												Х	
16	ТВ	Oct 08, 2019	Soil	S1	9-Oc11693													Х
17	TS	Oct 08, 2019	Soil	S1	9-Oc11694		Χ											
18	DUP01	Oct 08, 2019	Soil	S1	9-Oc11695									Х			Х	
19	DUP02	Oct 08, 2019	Soil	S1	9-Oc11696									Х			Х	
20	SPIKELAB	Oct 08, 2019	Soil	S1	9-Oc13433		Х											
Test	Counts	Counts								1	3	7	7	13	2	3	11	1

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Coffey Environments Pty Ltd NSW Company name:

Contact name: Jessie Sixsmith Project name: LAHC DSI

Project ID: SYDEN233878-LC COC number: Not provided

Turn around time: 5 Day

Oct 8, 2019 5:12 PM Date/Time received:

Eurofins reference: 681323

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 12.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- V Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). Notes^{N/A}

Please be advised that trip spikes and blanks reached their expiry on 08/03/2019. Trip01 (1 jar) forwarded to ALS.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Jessie Sixsmith - jessie.sixsmith@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page _____ 8498

	•	Consigni	ng Office:	Chatsw	ood					
CO	ffey				sixsmith.		Mobile:		Email:	@coffey.com
00	1109	Invoices	to: Cof	Genera	" ad min.		Phone:		Email:	@coffey.com
Project N	10: SYDEN 198927-LB Task No:	Lab		LE AND				An	alysis Request Sectio	n - La company
Project N	lame: LAHC OSI Laborate	ory: Euro	fins					//	/////	//////
Sampler's	s Name: Adrian Project I	Manager:	Jessie	sixsmith				///	10///	//////
Special In	structions:						/	10/1/5/	100	/////
Relevant a	agreements: Eurofins COF_ENAUABTF00952AA_MSA1; A	LS COF_ENAUA	BTF00952AA_	MSA2 and SG	S COF_ENAUABTF00	952AA_MSA3	/05	75/3/3/	1/1/1/	////
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	(specify)	13/43/			NOTES
	BH01-0-0-0-1	8/10	THE ST	Soil	5,3	5 day.	///			
	BHO1-0.3-0.4				5	1				
	BH02-0-0-0-1		200		5,8	100	1//			
	BH02-0-1-0.2		The same		J					
	BH03-0-0-0.1				J, B		///			
	BH04-0-0-0-1		VIII I		JiB		111			
	BH05-0-0-0-1				5,3		11/			
	BH05-01-6.2		A SECOND		5	10 m				
	BH06-0-0-0-1				5,8		1//			
	BH07-0.0-0-1				JB		11/			
	BHO7-0.1-0.2				J					
	ACMOI SSOI				B			X		
	ALTOZ SSOZ				B			×		
	Acmos sso3				B	100		X		
	RBOI		THE ALT OF							
	TB					1.1/				
	TS	1		9		W				
	RELINQUISHED BY	115/				CEIVED BY			Sample Receipt Adv	vice: (Lab Use Only)
The second second	Adno C Date: 8/10 nvironments Time: 3:15	7		Grave	Taraner		Date: 8/1/ Time: 5:1		All Samples Recieve	
Name:	Date:	3	Name:				Date:		Samples Received P	roperly Chilled
Company	r: Time:		Company	<i>r</i> :	A STATE OF THE PARTY OF THE PAR	Ball His	Time:		Lab. Ref/Batch No.	
100000000000000000000000000000000000000	er Type & Preservation Codes: P - Plastic, G- Glass huric Acid Preserved, I - Ice, ST - Sodium Thiosulfat					reserved, C -	Hydrochloric A	cid Preserved,		681323

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 2 of 2 8499

			CousiBuil	ng Office:												
cottev	7		Report R	esults to:		100		Mobile:				Em	ail:			@coffey.cor
coffey			Invoices	to:				Phone:	Dinn.		- 16 14	Em	ail:			@coffey.com
Project No: SYDE	N 198927-LC	Task No:			Marile.		The last				Anal	ysis Requ	iest Sec	tion		
Project Name:		Laboratory:						13.813	100	/	//	///	//	//	///	///
Sampler's Name:		Project Man	ager:							//	//	///	//	//	///	//
Special Instructions:						Trus Succession			6	9//	//	///	//	//	///	
Relevant agreements: Eu	urofins COF_ENAUABTF00952	AA_MSA1; ALS C	OF_ENAUA	3TF00952A	A_MSA2 and SG		Department of the last of the		40/	//	//	//,	//	//	///	
Lab No.	Sample ID		Sample Date	Time	Matrix (Soiletc)	Container Type 8 Preservative*	(specify)	19	3/	//	//	//	//	//	//[NOTES
Pu	1001		8/10		Soil	J	Sday	X			18					
DI	2090					5	17	X								
1.	1091		1		1	5	V	X							Trip	to ALS
										200						
							10000									
			72.58													THE POLICE
	No. Contract Contract					AND SECTION					1018					
					F BURLE			130								
						T. S. S. F. S.										ILINE XILSE
				THE STATE OF									1			
			E 18 18													
			200		The state of the s	- Control of										
						200										
	RELINQUISHED BY					RE	CEIVED BY					Sample	Receipt A	Advice: ((Lab Use Only)	
Name: Advisor C		8/10	-	Name:	Grace T			Date:		PEC S		All Samp	oles Recie	ved in G	ood Condition	
Coffey Environments	Time:	3-15	K-1	Compa	ny: tura	frus	11.327	Time:	5:12		3113	1			roper Order	
Name:	Date:		-	Name:				Date:				10000			ly Chilled	
Company:	Time:	1977		Compa	ny:	The Land Street		Time:	The Po	STATE OF		Lab. Ref	/Batch No	0.	6813	

#AU04_Enviro_Sample_NSW

From: Sixsmith, Jessie <Jessie.Sixsmith@coffey.com>

Sent: Thursday, 10 October 2019 9:21 AM

To: #AU04_Enviro_Sample_NSW

Cc: Christie, Adrian

Subject: RE: Attention: Eurofins Sample Receipt Advice - Report 681323 : Site LAHC DSI

(SYDEN198927_LB)

Follow Up Flag: Follow up Flag Status: Flagged

Hi Eurofins,

Could I please request the Coffey Job number is changed to SYDEN233878-LC.

Thanks,

Kind regards,

Jessie Sixsmith

Senior Environmental Scientist

t: +61 2 9406 1000 m: +61 438 271 821

From: EnviroSampleNSW@eurofins.com EnviroSampleNSW@eur

Sent: Tuesday, 8 October 2019 5:42 PM

To: Sixsmith, Jessie < <u>Jessie.Sixsmith@coffey.com</u>>

Subject: Attention: Eurofins Sample Receipt Advice - Report 681323 : Site LAHC DSI (SYDEN198927_LB)

• **CAUTION:** This email originated from an external sender. Verify the source before opening links or attachments.

Dear Valued Client,

Please be advised that trip spikes and blanks reached their expiry on 08/03/2019. Trip01 (1 jar) forwarded to ALS.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Grace Tuckwell **Sample Receipt**

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066

AUSTRALIA

Phone: +61 29900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1079 - PFAS Fingerprinting
EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click here to report this email as spam.

Scanned By Websense For Euro fins

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jessie Sixsmith

Report 683624-L

Project name LAHC DSI - ADDITIONAL
Project ID SYDEN233878-LC
Received Date Oct 21, 2019

Client Sample ID Sample Matrix			BH01_0.0-0.1 US Leachate	BH03_0.0-0.1 US Leachate	BH04_0.0-0.1 US Leachate
Eurofins Sample No.			M19-Oc30798	M19-Oc30799	M19-Oc30800
Date Sampled			Oct 08, 2019	Oct 08, 2019	Oct 08, 2019
Test/Reference	LOR	Unit			
Heavy Metals					
Lead	0.01	mg/L	0.03	0.06	0.02
USA Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.5	8.4	6.5
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.0	5.1	5.0
pH (USA HCI addition)	0.1	pH Units	1.6	1.4	1.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy MetalsMelbourneOct 21, 2019180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 683624-L

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

LAHC DSI - ADDITIONAL

SYDEN233878-LC

Order No.: Report #:

Phone:

Fax:

683624

+61 2 9406 1000

+61 2 9406 1004

Received: Due:

Oct 21, 2019 1:09 PM Oct 23, 2019

Priority: 2 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Lead	USA Leaching Procedure
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71		Х	Х
Sydr	ey Laboratory	- NATA Site # 1	8217				
Brist	oane Laboratory	y - NATA Site #	20794				
Pertl	Laboratory - N	NATA Site # 237	36				
Exte	rnal Laboratory	,					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	BH01_0.0-0.1	Oct 08, 2019		US Leachate	M19-Oc30798	Х	Х
2	BH03_0.0-0.1	Oct 08, 2019		US Leachate	M19-Oc30799	Х	Х
3	BH04_0.0-0.1	Oct 08, 2019		US Leachate	M19-Oc30800	Х	Х
Test	Counts					3	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	M19-Oc30106	NCP	%	103			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			•
Lead	M19-Oc30106	NCP	mg/L	0.03	0.03	2.0	30%	Pass	

Report Number: 683624-L

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Ursula Long Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Oct 23, 2019

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 6 of 6

Report Number: 683624-L

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 18217

16 Mars Road

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

LAHC DSI - ADDITIONAL

SYDEN233878-LC

Order No.: Report #:

Phone:

Fax:

683624

+61 2 9406 1000

+61 2 9406 1004

Received: Due:

Oct 21, 2019 1:09 PM

Oct 23, 2019 Priority: 2 Day

Contact Name: Jessie Sixsmith

Eurofins Analytical Services Manager: Ursula Long

Sample Detail					Lead	USA Leaching Procedure		
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	
Sydr	ney Laboratory	- NATA Site # 1	8217					
Brisl	pane Laborator	y - NATA Site #	20794					
Perti	n Laboratory - N	NATA Site # 237	36					
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	BH01_0.0-0.1	Oct 08, 2019		US Leachate	M19-Oc30798	Х	Х	
2	BH03_0.0-0.1	Oct 08, 2019		US Leachate	M19-Oc30799	Х	Х	
3 BH04_0.0-0.1 Oct 08, 2019 US Leachate M19-Oc30800				Х	Х			
Test Counts				3	3			

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Coffey Environments Pty Ltd NSW Company name:

Contact name: Jessie Sixsmith

Project name: LAHC DSI - ADDITIONAL

Project ID: SYDEN233878-LC COC number: Not provided

Turn around time: 2 Day

Oct 21, 2019 1:09 PM Date/Time received:

Eurofins reference: 683624

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 12.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Jessie Sixsmith - jessie.sixsmith@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

DATA VALIDATION SYDEN282995 - Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

3011 Allalysis - Lab Datch Nele	siences. 001323, 003024 and L31932	1932	
I. SAMPLE HANDLING			
		Yes	No
			(Comment below)
1. Were the sample holding tin	nes met?		
2. Were the samples in proper reaching the laboratory?	custody between the field and		
Were the samples properly a This includes keeping the sale.	and adequately preserved? mples chilled, where applicable.		
4. Were the samples received b	y the laboratory in good condition?		
COMMENTS:			
Sample Handling was:	☑ Satisfactory☐ Partially Satisfactory	☐ Unsatisfacto	ory

DATA VALIDATION SYDEN282995 - Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

II PRECISION/ACCURACY ASSESSMENT		
	Yes	No
		(Comment below)
Was a NATA registered laboratory used?		
2. Did the laboratory perform the requested tests?		
3. Were the laboratory methods adopted NATA endorsed?		
4. Were the appropriate test procedures followed?		
5. Were the reporting limits satisfactory?	\boxtimes	
6. Was the NATA Seal on the reports?		
7. Were the reports signed by an authorised person?	\boxtimes	
COMMENTO		·
COMMENTS:		

Precision/Accuracy of the Laboratory Report	Satisfactory ■	Unsatisfactory
	☐ Partially Satisfactory	

DATA VALIDATION SYDEN282995 - Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

III.	FIELD QA/QC		
1.	Number of Primary Samples Analysed	Soil	11
2.	Number of Days of Sampling:	Soil	1

3. Number and Type of QA/QC Samples Collected:

Quality Control Sample Type	No.	% Total No. Samples
Intra-lab Duplicates (Soil)	2	18%
Inter-lab Duplicates (Soil)	1	9%
Trip Blanks	1	-
Trip Spike	0	-
Equipment Rinsate	1	-

4. FIELD DUPLICATES

	Yes	No (Comment below)
A. Were an <u>Adequate Number</u> of field duplicates analysed for each chemical?		Ш
B. Were RPDs within Control Limits?a. Organics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR))		
b. Metals/Inorganics (No limit (<10 x LOR); 50% (10-20 x LOR);30% (>20 x LOR))		\boxtimes
c. Volatile & semi volatile organics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR))		

Coffey Services Australia Pty Ltd

ABN: 55 139 460 521

DATA VALIDATION SYDEN282995 – Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

CO	MN	1EN	TS:

Exceedances above the RPD were reported for heavy metal chromium between primary sample BH04_0.0-0.1 and inter-laboratory duplicate DUP01 and cadmium, chromium and zinc between sample BH04_0.0-0.1 and intra-laboratory duplicate TRIP-01. The exceedances are attributed to the heterogeneity of the fill material. As the concentrations of heavy metals are below the adopted site criteria, these exceedances are not expected to affect the outcome of the assessment

IV.	TRIP BLANKS	(TB)	AND TRIP	SPIKES	(TS)

- A. Were an Adequate Number of trip blanks and spikes analysed?
- B. Were the trip blanks free of contaminants and trip spike were within acceptance limit?
- C. Were the trip spikes reported within acceptable recoveries?

Yes	No
	(Comment
	below)
	\boxtimes

COMMENTS:

Trip blank results are presented in Table 3. A trip spike was submitted however was not analysed as it was outside of the holding time. Considering no volatile compounds were detected during this investigation, the absence of a trip spike is not expected to influence the overall outcome of the investigation.

6. EQUIPMENT RINSATE SAMPLES

- A. Were an adequate number of Equipment Rinsate Samples collected?
- B. Were the Equipment Rinsate Samples free of contaminants?

Yes	No		
	(Comment below)		
\boxtimes			
\boxtimes			

Field QA/QC was:	Satisfactory	Unsatisfactory

Unsatisfactory

Coffey Services Australia Pty Ltd ABN: 55 139 460 521

The laboratory internal QA/QC was:

DATA VALIDATION SYDEN282995 - Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

Type of QA/QC Samples			
		Yes	No
Laboratory Blanks/Reagent Blanks			
Laboratory Duplicates			
Matrix Spikes/Matrix Spike Duplicates			
Laboratory Control Spike			
Surrogate (where appropriate)*		\boxtimes	
 2 Were the laboratory blanks/reagents blanks free of contamination? 3. Were the spike recoveries within control limits? a. Organics (70% to 130%) b. Metals/Inorganic (70% to 130%) 4. Were the RPDs of the laboratory duplicates within control limits? 5. Were the surrogate recoveries within control limits? 		,	omment pelow)
COMMENTS: Spike recoveries failed for lead in sample S19-Oct14899 due to matrix recovery obtained for the laboratory control samples. The RPD for the duplicate sample for lead (S19-Oct14898) was outside however the RPD was found to have passed Eurofins Acceptance criteria.	of the accep	otance ra	inge of 30°

Satisfactory

☐ Partially Satisfactory

DATA VALIDATION SYDEN2829958 - Detailed Site Investigation, 20 & 22 Mindarie Street & Pinaroo Place, Lane Cove North, NSW

Soil Analysis - Lab Batch References: 681323, 683624 and ES1932932

VI	DATA USABILITY	
1.	Data Directly Usable	
2.	Data Usable with the following considerations	
3.	Data Not Usable.	

COMMENTS:

No inter-laboratory duplicate sample was analysed however is not considered to affect the overall outcome of the investigation.

This page has been left intentionally blank